
Bargaining over Bets∗

Kfir Eliaz† and Ran Spiegler‡

First version: November 2005
This vesion: May 2008

Abstract

When two agents hold different priors over an unverifiable state of nature,
which affects the outcome of a game they are about to play, they have an incen-
tive to bet on the game’s outcome. We pose the following question: what are
the limits to the agents’ ability to realize gains from such speculative bets when
their priors are private information? We apply a “mechanism design” approach
to this question. We characterize interim-efficient bets and discuss their imple-
mentability in terms of the underlying game’s payoff structure. In particular, we
show that as the costs of unilaterally manipulating the bet’s outcome become
more symmetric across states and agents, implementation becomes easier.

1 Introduction

In many situations people hold different opinions about how the future will unfold.

While these differences may be partially explained by asymmetric information, some

differences may still persist even if the individuals were to share all their information.

This could be the result of inherent biases that people have in forming their beliefs, such

as optimism and pessimism, or overconfidence in one’s ability to process information.

For example, a die-hard Mets fan, who watches or reads the same sports commentary

as a die-hard Yankees fan, would still disagree with the latter on the likelihood that
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his team would win the World Series. Another example includes entrepreneurs, who

are often inherently more optimistic than venture capitalists with regards to the prof-

itability of his start-up. Similarly, a group of entrepreneurs starting a business often

have different beliefs about the likelihood of future success. A fashion retailer may

believe that his daily contact with consumers makes him better capable of predicting

future demand than his supplier, who holds the opposite view owing to his experience

with a large number of retailers. Finally, traders in a market often arrive at different

conclusions about what the current economic data implies with regards to future prices.

In situations such as these, the parties involved can make speculative gains by

betting on future events. These bets may take an explicit form such as bets made on

sporting events. They could be somewhat less explicit as in form of financial derivatives.

But they could also be implicit in the form of contracts that the parties may write. For

example, an optimistic entrepreneur would be willing to exchange cash flow rights when

performance is low against claims when performance is high (see Landier and Thesmar

(2005)); an optimistic partner in a business venture would prefer to lower the salary

he withdraws in return for more stock options, while a pessimistic partner would hold

the opposite preference; and an optimistic retailer would agree to commit in advance

to a large stock for a relatively low price and pay a high penalty for any remaining

units that are not ordered (see Bazerman and Gillespie (1999)). These observations

suggest that institutions, which allow parties with heterogeneous beliefs to bet on the

future, are quite prevalent. To better understand these institutions, we need first to

understand what are the maximal speculative gains that can be made in the relevant

situations, and whether these gains can be attained when the parties’ beliefs are not

observed.

This paper addresses these questions with a simple two-period model, which we call

a “Bilateral Speculation Problem”. In period 2, a pair of agents plays a game whose

payoffs depend on an unverifiable state of Nature. The state is commonly known

in period 2. However, in period 1 it is unknown to the agents, who hold different

prior beliefs over the state and therefore might benefit from betting on it. Since the

state is unverifiable, the agents cannot bet on its realization. The set of verifiable

contingencies is captured by a partition over the set of action profiles in the game. A

bet signed in period 1 is a function that assigns a budget-balanced transfer to each

cell in the partition. The agents’ priors are private information, but it is common

knowledge that they are independently drawn from some distribution F . We define a

notion of a “constrained interim-efficient” bet and ask whether it can be implemented

in Bayesian equilibrium by some mechanism.
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Our model generalizes the framework of Eliaz and Spiegler (2006) (henceforth,

ES), which took the first step towards addressing the above questions in a context of

a simple example. The example is a special case of our model in which only a single

agent takes an action and has only two possible actions to choose from. ES show

that in this example, implementing a CIE bet between two parties is equivalent to

efficiently allocating an asset, which each party initially owns some share of. This latter

problem, first studied by Cramton, Gibbons and Klemperer (1987) (CGK henceforth),

extends the buyer-seller allocation problem of Myerson and Satterthwaite (1983) to

more general ownership structures, namely “partnerships” (hence, it is also termed

“efficient dissolution of a partnership”). A manipulable bet may be viewed as an asset

- an entitlement to receive a prize conditional on a random event - whose value and

initial ownership structure are determined by the underlying manipulation costs.

Our main result in this paper provides the conditions under which the equivalence

to the partnership dissolution problem extends to the more general framework studied

here. More precisely, we show that the equivalence holds whenever the CIE surplus

can be attained by a “purely speculative” bet, i.e., a bet that induces second-period

behavior, which is independent of the agents’ priors, and which may be sustained in the

absence of bets (formally, the bet induces the agents to play a Nash Equilibrium of the

original game in the second period). We demonstrate the usefulness of this equivalence

result with a pair of applications, in which agents are able to bet on the market price

that results from some market interaction in which they take part.

A key feature of the environment we study is that parties bet on outcomes that at

least one of them can manipulate. This feature is common to (almost) all of the above

examples: an entrepreneur can manipulate the profitability of his business venture

by insisting on pursuing his initial plans despite new information that may call for

a change; a partner in a business can manipulate the firm’s performance by trying

excessively risky strategies; a retailer can manipulate the amount he pays to his supplier

by ordering quantity in excess of real demand; and a large trader can manipulate future

prices by submitting large buy or sell orders on the spot market (see Newbery (1984)).

Finally, a sporting bet can be manipulated if one of the parties actually competes in

the event.

Our assumption that bets are manipulable, means that agents would not agree to

bet on arbitrarily large amounts. Bounded bets could be generated by alternative as-

sumptions, such as risk aversion or liquidity constraints. We find our method appealing

for a number of reasons. First, from a methodological point of view, quasi-linear utility

and unbounded transfers are standard assumptions in the mechanism design literature.
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Second, as mentioned above, there are many real-life situations in which agents with

heterogenous beliefs bet on outcomes they can manipulate. Third, the bounds on the

stakes of bets in our model are endogenous. This allows us to establish a link between

the implementability of constrained interim-efficient bets and the payoff structure of

the underlying game. The main result in the paper is that when a constrained interim-

efficient bet is “purely speculative” (in the sense that it does not affect the game’s

outcome), it can be implemented for a larger set of distributions F when the costs of

unilateral manipulation of the bet’s outcome become more symmetric across states and

agents.

The paper is organized as follows. The next section presents our model and our

main result. In Section 3 we consider two simple market applications of our result.

Section 4, which concludes the paper, discusses various aspects of our model and also

reviews some of the related literature.

2 The model

A bilateral speculation problem has the following components. There are two periods. In

period 2 a pair of agents, i = 1, 2, play a normal form game with complete information

denoted by G.We refer to G as the “bare game”. The set of actions available to agent

i is denoted Ai. A partition X is defined on the set of action profiles A1 × A2, such

that x(a1, a2) denotes the cell in the partition that contains the action profile (a1, a2).

We interpret X as the set of “verifiable outcomes”. For example, when G represents

a sports competition, a cell in X may consist of all action profiles which induce a

particular final score. When G is a market game, a cell in X may consist of all action

profiles which induce a particular trading price.

The payoffs in G depend on the state of Nature, which is common knowledge in

period 2. There are two possible states, u and v. In one state, player i’s utility function

from each action pair is ui : A1 × A2 → R, while in the second state this function is
vi : A1×A2 → R. Let G(ω) denote the second-period game played in state ω ∈ {u, v}.
We assume that G(ω) has a pure-strategy Nash equilibrium for every state ω. Let aω

denote the action profile that is played in state ω. Denote xω = x(aω).

In period 1, before the state is realized, the two agents hold different prior beliefs

over the states of Nature: agent i assigns probability θi to state u. These are purely

differences in prior opinions. This means that if agent i knew θj, this would not cause

him to update his belief regarding the state of Nature. Each agent independently and

privately draws his prior from the same, commonly known continuous cdf on [0, 1],
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denoted F.We represent a bilateral speculation problem by the tuple h(u, v), G,X, F i.
A bet t is a function that assigns a pair of budget-balanced transfers (t1, t2) to

every cell in X. Let ti[x(a1, a2)] denote the transfer that agent i receives from agent j,

when the action pair (a1, a2) is played. Budget-balancedness means that t1[x(a1, a2)] =

−t2[x(a1, a2)]. Given a bet t, the payoff of agent i from the action profile a = (a1, a2) is
ui(a) + ti[x(a)] in state u and vi(a) + ti[x(a)] in state v. We refer to the second-period

game induced by a bet t as the “modified game”, and denote it by G(ω, t).

We illustrate the model with the following simple example. Consider two team

members, who each needs to decide whether to exert effort (action h) or not (action

l) on some joint project. Hence, G is a 2× 2 game in which A1 = A2 = {h, l}. Unless
both exert effort, the project is not completed. In state u there are two pure-strategy

Nash Equilibria, one in which both agents exert no effort and another, Pareto superior

equilibrium, where both exert effort (i.e., ui(h, h) > ui(l, l) for i = 1, 2). In state v,

it is a dominant strategy for each agent to exert no effort (i.e., vi(l, l) > vi(h, l) and

vi(l, h) > vi(h, h) for i = 1, 2). Each member’s decision and payoff are observed only by

him. Hence, period 1 bets can be made contingent only on whether or not the project

is completed, i.e., X = {xh, xl} where xh = {(h, h)} and xl = {(l, l), (h, l), (l, h)}.
These bets may be interpreted as profit-sharing agreements: the two agents would

like to redistribute the project’s profits (or losses) among themselves, but since their

payoffs are not verifiable they can only specify budget balanced transfers as a function

of whether or not the project is completed.

Given a bilateral speculation problem, such as the one described above, we ask the

following questions. First, for a given pair of prior beliefs, what are the largest gains

from bets that the two agents can make? Second, can these gains be attained when

prior beliefs are private information?

Let us begin with our first question. Consider a bet t, and suppose that both

agents expect the action profiles in states u and v to be au = (au1 , a
u
2) and a

v = (av1, a
v
2)

respectively. Then agent i’s interim expected payoff from (au, av, t) is

θi[ui(a
u) + ti(x(a

u))] + (1− θi)[vi(a
v) + ti(x(a

v))]

We use the term “interim” to highlight the analogy with standard models of trade in

which an agent’s type is a preference parameter. As in the standard models, the agent’s

expected payoff is calculated after he learns his type which is drawn from a common

distribution F . In another sense, the term is inappropriate because the agent’s type is

a prior belief and F can be viewed as the agent’s second-order belief of the opponent’s
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prior.

The sum of the parties’ interim expected payoffs can be conveniently written as

(θ1 − θ2)[t1(x
u)− t1(x

v)] +
2X

i=1

[θiui(a
u) + (1− θi)vi(a

v)] (1)

Thus, if the agents could commit to coordinate in each state on an action profile that

belongs to a different cell inX, then there would be no upper bound on the stakes of the

bet that they would want to sign: if θ1 > (<) θ2, they would set t1(xu)À (¿) t1(xv).
However, because the agents cannot commit, they must take into account their ability

to manipulate the bet’s outcome.

For instance, suppose that in the team example the agents agree on a bet that

satisfies

t1(x
l)− t1(x

h) > u1(h, h)− u1(l, h)

Agent 1 would then choose l (exert no effort) in both states because the amount he

gains in side payments outweighs the “bare” loss he incurs by deviating from the state u

Nash equilibrium. But if agent 1 always shirks, the project would never be completed,

and the agents would not be able to bet. Thus, in order to be sustainable, a bet must

provide the agents with incentives to play in each state an action profile that belongs

to a different cell in the partition.

Definition 1 A triple (au, av, t) is constrained interim-efficient (CIE) for a given pair
of priors (θ1, θ2), if it maximizes (1) subject to the constraints

ui(a
u
i , a

u
j ) + ti[x(a

u
i , a

u
j )] ≥ ui(a

0
i, a

u
j ) + ti[x(a

0
i, a

u
j )] (SPIC)

vi(a
v
i , a

v
j ) + ti[x(a

v
i , a

v
j )] ≥ vi(a

0
i, a

v
j ) + ti[x(a

0
i, a

v
j )]

for i = 1, 2 and for all a0i ∈ Ai.

We refer to the value of the objective function (1), evaluated at a CIE tuple

(au, av, t), as the CIE surplus. We refer to a bet t as CIE if there exist action profiles au

and av such that (au, av, t) is CIE. The constraints of the optimization problem, given

by the above pair of inequalities, constitute the second-period incentive constraints

(SPIC). These ensure that indeed no agent has any incentive to unilaterally manipu-

late the bet in neither of the states. Formally, the SPIC constraints imply that au and
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av are pure-strategy Nash equilibria of the modified games G(u, t) and G(v, t). Our

first reslt establishes that the SPIC constraints rule out the infinite-bets problem.1

Proposition 1 For any finite G, the CIE surplus is finite and well-defined.

Note that this result relies on the assumption that the verifiability structure given

by the partition X is state-independent. When the partition varies with the state, it

is possible in some cases to sustain infinite bets.2

To better understand the notion of CIE surplus, let us apply it to our team example.

Note first that because the bet assigns exactly the same transfers to (l, l), (l, h) and

(h, l), the SPIC constraints imply that in each state ω, aω ∈ {(l, l), (h, h)}.
Suppose av = (h, h). Then the SPIC constraints in this state imply that

v1(l, h)− v1(h, h) ≤ t1(x
h)− t1(x

l) ≤ v2(h, h)− v2(h, l)

in contradiction to our assumption that l is a dominant strategy for each agent. It

follows that av = (l, l). Note that in this case, no agent has any incentive to deviate no

matter what bet is signed : choosing h does not increase the bare game payoff and does

not alter the transfers.

If au = (l, l), then there will be no bets and the interim-expected surplus would be

equal to
P

i[θiui(l, l)+(1− θi)vi(l, l)]. However, we can attain a strictly higher surplus

if we allow the agents to bet by letting au = (h, h). The SPIC constraints in this state

imply that

u1(l, h)− u1(h, h) ≤ t1(x
h)− t1(x

l) ≤ u2(h, h)− u2(h, l)

Since (h, h) is a Nash equilibrium in G(u), u2(h, h) − u2(h, l) ≥ 0 while u1(l, h) −
u1(h, h) ≤ 0. Thus, a tuple ((h, h), (l, l), t), where t satisfies the above inequality,

attains a total interim-expected surplus, which equals

(θ1 − θ2)[u2(h, h)− u2(h, l)] +
X
i

[θiui(l, l) + (1− θi)vi(h, h)]

1If the modified game G(ω, t) does not have a pure-strategy NE, t is ruled out as far as constrained
interim-efficiency is concerned. Since the bare game is assumed to have a pure-strategy NE in each
state, the constrained optimization problem has a solution.

2We thank a referee for this point.
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if θ1 > θ2, and it is equal to

(θ2 − θ1)[u1(h, h)− u1(l, h)] +
X
i

[θiui(l, l) + (1− θi)vi(h, h)]

if θ2 > θ1. Notice that each of these expressions is strictly higher than
P

i[θiui(l, l) +

(1− θi)vi(l, l)]. Therefore, ((h, h), (l, l), t) is CIE and the CIE surplus is given by the

above expressions.

Discussion of our epistemic assumptions
A key ingredient in our model is the assumption that the agents’ conflicting beliefs are

due to heterogeneous prior opinions. In particular, their beliefs cannot be derived from

a common prior via Bayes’ rule. To see why, assume that the agents shared a common

prior belief, where p(ω, θ1, θ2) denotes the prior probability that the state of Nature is

ω, agent 1’s type is θ1 and agent 2’s type is θ2. The posterior probability that type θi
of agent i assigns to u is θi. Our assumption that knowing the opponent’s type does

not cause an agent to update his beliefs regarding the state of Nature implies that for

every θi, θj, θ
0
j, pi(u | θi, θj) = pi(u | θi, θ0j). That is:

p(u, θi, θj)

p(u, θi, θj) + p(v, θi, θj)
=

p(u, θi, θ
0
j)

p(u, θi, θ
0
j) + p(v, θi, θ

0
j)

But since agent j’s belief regarding the state of Nature is unaffected by knowledge of

θi, the L.H.S and R.H.S of this equation are the posterior probabilities that types θj
and θ0j assign to u. Thus, θj = θ0j, a contradiction.

The assumption that F is common knowledge is made mainly for methodological

reasons, since we wish to parallel the simplest textbook mechanism-design models.

One interpretation of this assumption is that in many instances, θi is best viewed as

agent i’s degree of optimism. For instance, when G is a price-competition game, u

may be characterized by a lower cost of production than v. Alternatively, when G is a

bilateral-trade game, there may be larger gains from trade in u than in v. Optimism is

a personal trait which is as characteristic of an individual as his valuation of a tradable

object in a standard model. Thus, the question of whether F is common knowledge is

as pertinent to our model as it is to standard models of trade based on differences in

tastes.3

3However, Yildiz (2007) argues that there is a tension between equilibrium analysis and the inter-
pretation of an agent’s prior over states of nature as reflecting his degree of optimism. The reason is
that it is unclear why the agent’s optimism does not extend to the formation of beliefs regarding the
opponent’s strategy.
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An alternative interpretation is that there is a distribution of prior opinions in

the general population. Agents become familiar with this distribution by observing a

public poll. The common-knowledge assumption means that all agents share the same

beliefs regarding the poll’s accuracy.

2.1 Purely speculative CIE bets

Since bets are essentially side transfers that modify the payoffs of the second-period

game, they can be used not only for speculation, but also as means for sustaining

collusion. The speculative role of bets can best be isolated when the agents attain the

CIE surplus with a bet that does not affect their second-period behavior, in the sense

that their choice of actions is the same as in the absence of bets. Such a CIE bet

may be viewed as “purely speculative”, since it serves purely as a means for realizing

speculative gains.

Definition 2 We say that the CIE surplus is attained by pure speculation if there exists
a pair of action profiles, (au, av), with the following properties: (i) au and av are Nash

equilibria in G(u) and G(v) respectively, and (ii) for every pair of priors θ, there exists

a bet t(θ) such that [au, av, t(θ)] is CIE for θ. In this case, we say that [au, av, t(θ)] is

a purely speculative CIE tuple and that t(θ) is a purely speculative CIE bet.

Note that in general, attaining the CIE surplus may require au and av to vary with

θ. However, when the CIE surplus is attained with a purely speculative bet, au and av

are not only independent of the priors, but also a Nash equilibrium of the bare game.

For instance, the CIE surplus in our team example is attained by pure speculation.

To see why, recall that in the previous subsection we showed that the CIE surplus is

attained by a bet that induces each agent to play his unique dominant strategy of the

bare game in state v and to coordinate on the Pareto superior Nash equilibrium of the

bare game in state u.

In order to characterize purely speculative CIE bets, we shall need the following

notation. For each verifiable outcome x and for each action aj ∈ Aj, define Ai(x, aj) ≡
{ai ∈ Ai : x(ai, aj) = x}. That is, Ai(x, aj) is the (possibly empty) set of actions for

agent i that induce the verifiable outcome x whenever agent j plays aj. Let di(aω → x)

be the minimal cost that agent i incurs (in terms of his bare-game payoff) when he

unilaterally changes the outcome of G(ω), from aω = (aωi , a
ω
j ) to an action profile that
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belongs to the verifiable outcome x ∈ X. Formally:

di(a
u → x) ≡

(
mina0i∈Ai(x,auj )

[ui(a
u
i , a

u
j )− ui(a

0
i, a

u
j )] if Ai(x, a

u
j ) 6= ∅

∞ if Ai(x, a
u
j ) = ∅

Define di(av → x) in a similar manner. Note first that if (au, av, t) is a CIE tuple,

then di(a
ω → x(aω)) = 0, because t is constant over all action profiles in x. If di(aω →

x(aω)) < 0, then agent i would have a profitable deviation from aωi , in contradiction

to aω being a Nash equilibrium of G(ω, t). Also note that if [au, av, t(θ)] is a purely

speculative CIE tuple, then di(aω → x) ≥ 0, because aω is a Nash equilibrium of G(ω).
For the final piece of notation, let

D1(a
u, av) ≡ min

y∈X
d1(a

u → y) + d2(a
v → y)

D2(a
u, av) ≡ min

y∈X
d2(a

u → y) + d1(a
v → y)

D∗(au, av | θ) =

(
D2(a

u, av) if θ1 > θ2

−D1(a
u, av) if θ1 < θ2

When the underlying game is not finite, we assume that u and v are such thatD1(a
u, av)

and D2(a
u, av) are well-defined.

Proposition 2 A purely speculative CIE bet t satisfies the following property for every
pair of priors θ:

t1(x
u)− t1(x

v) = D∗(au, av | θ) (2)

Thus, the stakes of purely speculative CIE bets are determined by how costly it is

for agents (in terms of bare-game payoffs) to manipulate the bet’s outcome unilaterally.

To understand the meaning of D∗(au, av | θ), consider two special cases. First, in our
team example, when both agents exert no effort in state v (i.e., av = (l, l)) the project

is not completed (i.e., xv = xl), and neither agent can unilaterally change this outcome.

However, when both agents exert effort in state u (au = (h, h)) the project is completed

(xu = xh), but by shirking, each agent can unilaterally prevent the project from being

completed (i.e., induce the outcome xu). Therefore,

D1(a
u, av) = u1(a

u
1 , a

u
2)− u1(a

v
1, a

u
2) = u1(h, h)− u1(l, h)

and

D2(a
u, av) = u2(a

u
1 , a

u
2)− u2(a

u
1 , a

v
2) = u2(h, h)− u2(h, l)
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By Proposition 2, a purely speculative bet in this example satisfies the following for

every pair of priors:

t1(x
u)− t1(x

v) =

(
u2(h, h)− u2(h, l) if θ1 > θ2

u1(l, h)− u1(h, h) if θ1 < θ2
(3)

Second, consider a symmetric Bertrand model, in which the firms’ marginal cost in

state ω is cω, ω ∈ {L,H}, cL < cH . Assume that a verifiable outcome is the market price

induced by the firms’ bids. We analyze this example in detail in Section 4. In particular,

we show that the CIE surplus can be sustained if firms play the bare-game Nash

equilibrium in each state. While neither firm can manipulate the market price in state

L upward, each firm can manipulate the market price in state H, from cH downwards

to cL. Other market prices turn out not to matter. Thus, the stakes of the purely

speculative CIE bet are determined by the two firms’ cost of unilaterally manipulating

the bet’s outcome from xH into xL. Specifically, D1(a
u, av) = D2(a

u, av) = cH − cL.

In more complicated situations, we also need to take into account manipulation

of the bet’s outcome from aω into an outcome y which never occurs in any state in

equilibrium. To see the origin of the expression for D1(a
u, av) in this more general

case, suppose that agent 1 has bet against xu, presumably because he thought that

u was unlikely. Now, when the state u occurs and the outcome xu is expected to

be realized, agent 1 may wish to manipulate the bet’s outcome. One possibility is to

impose an outcome in xv, in which case agent 1 suffers a bare-game loss of d1(au → xv).

Clearly, the side-bet difference t1(xv)− t1(x
u) cannot exceed this amount. But another

way is to impose an outcome y 6= xv, in which case agent 1 suffers a bare-game loss

of d1(xu → y). By budget-balancedness, this affects the bounds on t1(x
v) − t1(x

u),

through the possibility that agent 2 will manipulate the bet’s outcome from av to y.

To conclude this sub-section, we need to emphasize that our focus on purely specu-

lative CIE bets means that in certain classes of situations, our anlysis is vacuous. For

instance, when G(u) and G(v) have a unique Nash equilibrium which happens to be

the same, pure speculation implies no betting and therefore, if betting can enhance the

agents’ interim surplus at all, it must distort the game’s outcome at least in one state

and therefore cannot be purely speculative. The general problem of characterizing the

class of games for which the CIE surplus is attained by pure speculation is difficult and

left for future research.
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2.2 Implementation of purely speculative CIE bets

We now turn to the question of whether the CIE surplus can be implemented when the

parties’ priors are private information. Before presenting the implementation problem

we consider, it is first instructive to note how privately known priors could act as

a barrier to mutually beneficial speculative bets. Consider our team example, and

assume that u1(h, h)− u1(l, h) = u2(h, h)− u2(h, l). Suppose that in period 1, the two

agents play the following naïve mechanism: each agent guesses whether the second-

period outcome will be xu or xv; when exactly one agent guesses correctly, he receives
1
2
[u1(h, h)− u1(l, h)] from the other party; otherwise, no payments are made in period

2. Since θ1 6= θ2 with probability one, the two agents can always earn speculative

gains, if the agent with the higher prior on u guesses xu, while the other guesses xv.

However, note that when θ1, θ2 >
1
2
, both agents would want to guess xu. Similarly,

when θ1, θ2 <
1
2
, both would want to guess xv. Consequently, for this range of (θ1, θ2),

the fact that the parties’ priors are private information implies that they forgo potential

speculative gains.

Note that in the naïve mechanism whenever θi > 1
2
, agent i would want to behave

as if his prior is 1, and when θi <
1
2
, he would want to behave as if it is 0. Thus, there

is no predetermined direction in which an agent would want to exaggerate his private

information. This contrast with a standard problem of trade between a buyer and a

seller whose valuations of an asset are private information: the buyer would always

want to exaggerate his value downwards, while the seller would want to exaggerate his

value upwards. This suggests that the effect of asymmetric information in our model is

similar to a situation in which two parties with private valuations of an asset wish to

allocate this asset between them, but neither has full ownership rights over it (hence,

each party is in some sense both a seller and a buyer). This analogy shall play an

important role in our main result of this section.

We consider the problem of implementing the CIE surplus via a direct mechanism.

This means that the parties play a two-period game, denoted Γ. In period 1, each

agent i submits a report θ̂i ∈ [0, 1] or chooses not to participate. If at least one agent
chooses the latter, the agents play G(ω) in state ω. Otherwise, every profile of reports

θ̂ = (θ̂1, θ̂2) is assigned a bet t(θ̂), and the agents play G(ω, t(θ̂)) in period 2. Thus, a

direct mechanism t(θ̂) induces a two-stage game with incomplete information, denoted

Γ(t).

Define

T u
i (θ

0
i) ≡

Z 1

0

ti(x
u | θ0i, θj)dF (θj)
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and

T v
i (θ

0
i) ≡

Z 1

0

ti(x
v | θ0i, θj)dF (θj)

That is, if agent i reports a prior θ0i, while agent j is truthful, then Tω
i (θ

0
i) is agent i’s

expected transfer in state ω under the mechanism t(θ̂).

Definition 3 Suppose that the CIE surplus is attained by pure speculation for every
profile of priors. A direct mechanism t(θ̂) implements the CIE surplus for a given

distribution F if:

(EFF) t(θ̂) satisfies (2),

and there exists a PBNE in Γ(t) satisfying:

(PS-SPIC) The second-period action profile in state ω is aω after every history, where

aω is a pure-strategy Nash equilibrium in G(ω).

(IC) Each agent reports his true prior in period 1, conditional on participating. That

is, for every i = 1, 2 and every θi, θ0i:

θi[T
u
i (θi)− T v

i (θi)] + T v
i (θi) ≥ θi[T

u
i (θ

0
i)− T v

i (θ
0
i)] + T v

i (θ
0
i)

(IR) Each agent chooses to participate in period 1. That is, for every i = 1, 2 and

every θi:

θi[T
u
i (θi)− T v

i (θi)] + T v
i (θi) ≥ 0

The EFF condition means that if the agents report truthfully, then t(θ̂) is a CIE

bet. Condition PS-SPIC means that in the second stage of Γ(t), the agents play a Nash

equilibrium of the bare game, independently of the first-stage outcome. This means

that we are forcing the mechanism to be purely speculative. The IC and IR constraints

refer to the agents’ first-period decisions. Note that because of the pure speculation

assumption, these constraints suppress any reference to the bare-game payoffs.4

Our goal is to establish a relation between implementation of the pure specula-

tion CIE surplus in a bilateral speculation problem and implementation of efficient

dissolution of a partnership. This latter problem is defined as follows. A two-member

partnership is a triple hr1, r2, F i, where ri is partner i’s initial share in the jointly

4Note that the IR constraint captures the fact that the assumption of pure speculation implies
that when the players do not sign a bet, they play the Nash equilibrium of the bare game.
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owned asset and F is the continuous distribution on [0, 1] from which both partners

independently (but privately) draw their valuations of the asset. The partners are

assumed to be risk neutral with quasi-linear preferences, where θi denotes partner i’s

value for a unit of the asset. A partnership is dissolved efficiently if the entire asset

r1 + r2 is allocated to the partner with the highest valuation.

A direct mechanism for dissolving a partnership is a pair of functions (q(θ̂),m(θ̂))

that assign, for each pair of reported values θ̂, an allocation of shares, q1(θ̂) and q2(θ̂),

and a pair of monetary transfers, m1(θ̂) and m2(θ̂), such that for all θ̂, qi(θ̂) ≥ 0,

q1(θ̂) + q2(θ̂) = r1 + r2 and m1(θ̂) +m2(θ̂) = 0.

Definition 4 A mechanism (q(θ̂),m(θ̂)) efficiently dissolves a partnership hr1, r2, F i
if it satisfies the following properties for i = 1, 2:

(EFF∗) Whenever θ̂ = θ,

qi(θ) =

(
r1 + r2 if θ1 ≥ θ2

0 if θ1 < θ2

(IC∗) There is a Bayesian Nash equilibrium in which every partner reports his true

value. That is, for every i = 1, 2 and every θi, θ
0
i:

θiQi(θi) +Mi(θi) ≥ θiQi(θ
0
i) +Mi(θ

0
i)

where Qi(θ̂i) ≡ Eθjqi(θ̂i, θj) and Mi(θ̂i) ≡ Eθjmi(θ̂i, θj).

(IR∗) Each partner’s interim-expected payoff in the truth-telling Bayesian Nash equi-

librium is at least as high as the value he assigns to his initial share. That is, for every

i = 1, 2 and every θi :

θiQi(θi) +Mi(θi) ≥ θiri

We say that a partnership can be dissolved efficiently if there exists a direct mech-

anism that implements its efficient dissolution. We are now ready for the main result

of this paper.

Proposition 3 Let h(u, v), G,X, F i be a bilateral speculation problem for which the

CIE surplus is attained by pure speculation for all profile of priors and sustains aω

in state ω. The CIE surplus is implementable for F if and only if the partnership

hD1(a
u, av), D2(a

u, av), F i can be efficiently dissolved.
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Thus, implementing a pure speculation CIE surplus is equivalent to implement-

ing efficient dissolution of a partnership, where the size of the jointly owned asset is

D1(a
u, av)+D2(a

u, av), and the partners’ shares are D1(a
u, av) and D2(a

u, av). We can

therefore utilize Propositions 1-3 in CGK, and obtain the following corollary. Let

ρ =
D1(a

u, av)

D1(au, av) +D2(au, av)

Corollary 1 Suppose that the bilateral speculation problem h(u, v), G,X, F i has a CIE
surplus that is attained by pure speculation. for all profile of priors. Then, there exists

a distribution F for which the CIE surplus is implementable, if and only if ρ ∈ (0, 1).
Moreover, as ρ becomes closer to 1

2
, the set of such distributions F expands. When

ρ = 1
2
, the CIE surplus is implementable for every F .

To see the meaning of these results, suppose that we can ignore the possibility that

agents manipulate the bet’s outcome into some y 6= xu, xv. In this case:

D1(a
u, av) ≡ min {d1(au → xv), d2(a

v → xu)}
D2(a

u, av) ≡ min {d2(au → xv), d1(a
v → xu)}

This means that implementability of the CIE surplus depends on either: (i) the extent

to which the costs of manipulating the bet in one of the states are asymmetric across

agents; or (ii) the extent to which the costs of manipulating the bet for one of the agents

are asymmetric across states. As these asymmetries vanish, the set of distributions F

for which the CIE surplus is implementable expands.5

When G(u) and G(v) are symmetric games, and au and av are symmetric Nash

equilibria in G(u) and G(v), we have D1(a
u, av) = D2(a

u, av). In this case, our imple-

mentation problem is equivalent to the equal-share partnership dissolution problem,

which CGK show to be implementable for any F . Thus, symmetric speculation prob-

lems occupy a special place in our model.

Let us use our team example to illustrate the intuition for Proposition 3 and Corol-

lary 1. Suppose the agents use a mechanism that satisfies (3) but with regards to the

agent’s reported priors θ̂ = (θ̂1, θ̂2). Then, regardless of the first-period outcome, there

is a Nash equilibrium in the second-period subgame in which the agents play (h, h) in

state u and (l, l) in state v. Moreover, if θ̂ = θ, then this mechanism assigns a CIE bet

5When deviations to outcomes y 6= xu, xv cannot be ignored, the exact form of asymmetry which
is relevant for the corollary is somewhat harder to interpret.
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to every pair of priors. The problem is to design such a mechanism, which also ensures

that the parties participate and report their true priors.

To tackle this problem, we reinterpret it as a standard allocation problem. Suppose

that both agents report their true priors in period 1. Let au = (h, h) and av = (l, l)

and denote δ1(h, l) ≡ u1(h, h)− u1(l, h) and δ2(h, l) ≡ u2(h, h)− u2(h, l). Consider the

decision problem that an agent, say agent 1, faces in the second period. What is agent

1’s gain in period 2 from choosing aω1 in state ω relative to choosing l? By definition,

the gain is zero in state v, regardless of whether θ̂1 is higher or lower than θ̂2. However,

in state u the gain is δ1(h, l)− [t1(xv | θ̂)− t1(x
u | θ̂)]. By our construction of t(θ̂) and

the assumption that θ̂ = θ, this difference is equal to zero when θ2 > θ1 and equal to

δ1(h, l) + δ2(h, l) when θ1 > θ2.

Thus, the agent’s gain may be interpreted as a right to receive a prize of δ1(h, l) +

δ2(h, l), conditional on (h, h) being played in period 2. Put differently, the right is an

asset of size δ1(h, l)+δ2(h, l), whose first-period valuation by each agent is θi[δ1(h, l)+

δ2(h, l)]. Note that agent 1 receives this asset if and only if θ1 > θ2. This is analogous

to allocating the asset to the person who values it the most. If no bet is signed in

period 1, and the agents coordinate on (h, h) in period 2, then agent 1’s gain from

choosing aω1 relative to choosing l is zero in state v and δ1(h, l) in state u. Thus, it is

as if agent 1 initially holds a share of δ1(h, l) in the asset. His first-period valuation of

this asset is θ1δ1(h, l). By signing the bet with the speculator, the agent increases his

share by δ2(h, l), as long as θ1 > θ2.

These observations suggest that the problem of implementing the CIE surplus is

analogous to the problem of dissolving a partnership efficiently. In this problem, two

agents jointly hold an asset of size δ1(h, l) + δ2(h, l). The agents’ shares in the asset

are δ1(h, l) and δ2(h, l). Each agent privately and independently draws a valuation

of the asset. The problem is to design a mechanism that allocates the entire asset

to the agent with the highest valuation, subject to the constraint that both agents

agree to participate in this mechanism. CGK showed that implementing this objective

depends on the initial ownership structure. When δ1(h, l)À δ2(h, l) - that is, if agent 1

enters the negotiation mostly a “seller” of the asset - the same forces that underlie the

Myerson-Satterthwaite theoremmake it hard to allocate the asset efficiently. As the gap

between δ1(h, l) and δ2(h, l) shrinks, each agent enters the negotiation both as a seller

and a buyer, and thus he has “countervailing incentives” when reporting his valuation.

Translated into the language of our model, this result means that implementing the

CIE bet becomes easier when the agent’s costs of unilaterally manipulating the bet

become more even in state u.
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3 Applications

In this section we apply the main result to environments in which agents play a market

game in period 2, and bet on its outcome in period 1.

3.1 Bertrand competition

In this sub-section, the second-period bare game G is a standard Bertrand competition,

where each seller i ∈ {1, 2} chooses a price ai ∈ R (we allow for negative prices). The
market price induced by aω is pω = min(aω1 , a

ω
2 ). The sellers have identical marginal

costs, which are fixed and may be cH > 0 in state H or cL ∈ [0, cH) in state L. Let θi
denote seller i’s prior on L. In period 1, the sellers can sign a bet that is contingent

only on the second-period market price. Thus, x(a1, a2) = min{a1, a2}.

Proposition 4 In the above bilateral speculation problem, the CIE surplus is attained
by pure speculation for any profile of priors. Moreover:

(i) The CIE surplus is sustained by a triple (aL, aH , t) such that:

aω = (cω, cω) for every ω = L,H

ti(p) = ti(c
H) for all p > cL

ti(p) = ti(c
H) + cH − cL for all p ≤ cL

where i = argmax(θ1, θ2).

(ii) The CIE surplus is |θ1 − θ2| · (cH − cL).

Under the purely speculative CIE bet, both sellers play aω = cω in each state ω.

Therefore, their bare-game payoff is zero, and their interim surplus is derived from

the side bets only. The stakes of their bet are determined by the cost of unilaterally

lowering the price in state H, from cH to cL. In contrast, no seller can unilaterally

manipulate the market price in state L upward.

The proof of this result is not trivial. Pure speculation implies pH = cH and pL = cL.

One could imagine that if we extended the gap between pH and pL, we might be able

to relax the SPIC constraints and thereby increase the stakes of CIE bets. However,

we show that in order for this to be sustainable, there must be a state ω for which

pω < cω. The challenging part in the proof is to show that the SPIC constraints that

are required in order to sustain a price below the marginal cost are too stringent.

17



Corollary 2 In the above bilateral speculation problem, the CIE surplus is imple-

mentable for every F .

The reason for this result is that D1(a
H , aL) = D2(a

H , aL) = cH − cL, and by

Corollary 1, our implementation problem is equivalent to an equal-share partnership

dissolution problem.

3.2 Bilateral trade

In this sub-section, the second-period bare game involves bilateral trade. A seller,

denoted s, owns one unit of an indivisible good. The value of the good to the seller

is c. A potential buyer, denoted b, evaluates the good at l or h, where h > c > l. In

period 2, when the buyer’s valuation becomes common knowledge, the two agents play

a double auction: they simultaneously submit ask and bid prices, ps and pb; if pb ≥ ps,

trade takes place at a price 1
2
pb +

1
2
ps; and if pb < ps, there is no trade. Thus, if there

is trade at a price p when the buyer’s valuation is ω ∈ {l, h}, then the buyer’s payoff
is ω − p and the seller’s payoff is p− c. If there is no trade, both agents earn a payoff

of zero. We allow bid and ask prices to be arbitrarily positive or arbitrarily negative.

We assume that the agents can only bet on whether trade takes place, and at what

price. Thus, if (pb, ps) and (p0b, p
0
s) induce the same market price, or if both result in

no trade, then x(pb, ps) = x(p0b, p
0
s). We use the following abbreviated notation. If

(pb, ps) induces trade at a price p, we write x = p. If (pb, ps) induces no trade, we write

x = NT . Let θb and θs denote the prior probabilities that the buyer and seller assign

to h.

Proposition 5 In the above bilateral speculation problem, the CIE surplus is attained
by pure speculation for any profile of priors. Moreover:

(i) The value of the CIE surplus is

max(θs, θb) · (h− c)
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(ii) The CIE surplus is sustained by any (al, ah, t) for which:

pls À 0, plb ¿ 0 (hence xl = NT )

phs = phb =
h+ c

2

ts(x) =

(
ts(NT ) + h−c

2
if θs > θb

ts(NT )− h−c
2

if θs < θb
for any x 6= NT

Observe that the CIE bet conditions only on whether trade takes place, and does

not distinguish between different trading prices.

Corollary 3 The CIE surplus is implementable for every F .

To see why this corollary holds, note that the action profiles (pls, p
l
b) and (p

h
s , p

l
b)

are bare-game Nash equilibria in states l and h, respectively. Also note that part (ii)

in Proposition 5 implies D1(a
l, ah, t) = D2(a

l, ah, t) = h−c
2
. Therefore, by Corollary 1,

the CIE surplus is implementable for any F .

This result relies on a suitable selection of the equilibrium market price in state

h. The bare game G(h) has a continuum of Nash equilibria. It can be shown that

for each of these equilibria ah, there exists a purely speculative CIE bet t. However,

these alternative equilibria would implyD1(a
l, ah) 6= D2(a

l, ah), and therefore we would

not be able to claim that implementation is possible for all distributions F . It turns

out that there is a unique trading price ph = h+c
2
for which we can construct a tuple

(ah, al, t) such thatD1(a
l, ah) = D2(a

l, ah). Thus, the requirement that the CIE surplus

be implementable for all F pins down the market price in state h.

4 Discussion

In this section, we discuss extensions and elaborations of our model, as well as related

literature.

An indirect mechanism
The purely speculative, CIE tuples (au, av, t) derived in the applications of Section 4

share two properties. First, D1(a
u, av) = D2(a

u, av). Second, t has only two values in

its range. In other words, there is a two-cell partition of the set of verifiable outcomes,

{Xu, Xv}, such that t(x) = t(xu) for every x ∈ Xu, and t(x) = t(xv) for every x ∈ Xv.
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In our team example, the first property holds whenever u1(h, h)−u1(l, h) = u2(h, h)−
u2(h, l), while the second property holds automatically because X has only two cells.

It can be shown that these properties imply that for any F , the CIE surplus can

be implemented by the following indirect mechanism. In period 1, the agents play a

sealed-bid, first-price auction in which: (i) the revenues are equally shared among the

bidders; (ii) the highest-bidding agent wins the right to receive a transfer of D2(a
u, av)

from the other agent if and only if the second-period outcome is in Xu. The proof of

this result, which is omitted for the sake of brevity, adapts Propositions 5 and 6 in

CGK to the language of our model.

In the Bertrand example of Sub-Section 4.1, this indirect mechanism means that

the sellers play a first-price auction for the right to receive a prize of cH − cL as long

as the market price does not exceed cL. In the bilateral trade example of Sub-Section

4.2, the two parties play a first-price auction for the right to receive a prize of h−c
2

whenever trade occurs. In the team example, the mechanism means that the agents

play a first-price auction in order to determine which of them wins the right to a prize

of δ1(h, l), conditional on the project being completed in period 2.

In all three cases, the CIE bet may be interpreted as a future contract (which is

essentially a step function of the market price in the Bertrand example, or a function of

whether the market clears in the bilateral trade example, or a function of whether the

project is completed in the team example), competed for in a market which is designed

as a first-price auction. Thus, the indirect mechanism may serve as a theoretical

benchmark for the design of market institutions for speculative trade in derivatives.

Impurely speculative bets
Our main result concerns the implementability of pure-speculation CIE surplus. We

have given a number of examples, in which the CIE bets are indeed purely speculative,

and therefore the main result applies. However, in some cases, constrained interim-

efficiency is inconsistent with pure speculation: second-period behavior depends on the

bet signed in the first period, and therefore on the agents’ priors. For instance, modify

the bilateral trade example of Sub-Section 4.2 such that l > c. The ex-post efficient

outcome now involves trade in both states. Using the same methods of derivation as

in Sub-Section 4.2, it can be shown that the CIE surplus is

max(θs, θb) · (h− c) + [1−min(θs, θb)] · (l − c)

and in particular, the market outcome is ex-post efficient in both states.

In order for CIE bets to be purely speculative, the assignment of market prices to
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states must be independent of the agents’ priors. Thus, for every ω = l, h, there must

be a trading price pω which is independent of (θs, θb). Denote p∗ = max(pl, ph) and

p∗ = min(p
l, ph). If p∗ = p∗, then total surplus is θbh+(1− θb)l− c, which is below the

CIE surplus. Therefore, p∗ > p∗.

Suppose that p∗ = ph and p∗ = pl. The seller can unilaterally lower the price in

state h from ph to pl. The following SPIC constraint prevents him from doing so:

ph − c+ ts(p
h) ≥ pl − c+ ts(p

l)

Therefore, ph + ts(p
h)− pl − ts(p

l) ≥ 0. The expression for total surplus is:

[θbh+ (1− θb)l − c] + (θs − θb) · [ph + ts(p
h)− pl − ts(p

l)]

It follows that when θs < θb, we are unable to attain the CIE surplus.

Now suppose that p∗ = pl and p∗ = ph. The buyer can unilaterally raise the price

in state h from ph to pl. The following SPIC constraint prevents him from doing so:

h− ph − ts(p
h) ≥ h− pl − ts(p

l)

Therefore, ph + ts(p
h)− pl − ts(p

l) ≤ 0. It follows that when θs > θb, we are unable to

attain the CIE surplus.

It can be shown that the CIE surplus can be attained if the assignment of trading

prices to states depends on the identity of the agent with the highest θ. This means

that CIE bets cannot be purely speculative. It turns out that although we are unable

to apply our main result, the same methods can be adapted to demonstrate that the

CIE surplus is implementable for every F . The key to this adaptation is to view the

trading price pω as part of the transfer that takes place in state ω (and as such to

allow it to depend on θ), and then use the SPIC constraints to derive bounds on

ph+ ts(p
h)− pl− ts(p

l), rather than on ts(ph)− ts(p
l). For the sake of brevity, we omit

the proof of this claim.

Multilateral speculation problems
We have restricted attention to bilateral speculation problems. Extending the model

to games with more than two agents is straightforward. However, Proposition 1 ceases

to hold in this case. For instance, suppose that the partition X is the finest possible

- that is, the agents can sign bets that condition on the second-period action profile.

Then, under mild assumptions on the bare-game payoff structure, infinite bets become

possible, by letting agents 1 and 2 bet on agent 3’s action. Agents 1 and 2 are thus
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unable to manipulate the bet’s outcome, and therefore the stakes of their bet are

unlimited. The only problem is to provide agent 3 with incentives to play different

actions in the two states. But since agents 1 and 2 earn unlimited speculative gains,

they can use these gains to provide the necessary incentives.

Our approach, however, remains fruitful in some special cases. One simple case

is when the partition X consists of only two cells. For instance, suppose that in our

team example there were n > 2 team members. As in our original example, unless all

members exert effort, the project is not completed. All other features of our example

remain the same: the bare game in state u has a Pareto superior Nash equilibrium in

which all members exert effort, in state u it is a dominant strategy for each agent to

exert no effort, and agents can only bet on whether or not the project is completed.

With slight abuse of notation, let ui(xh) and vi(x
h) denote agent i’s bare-game payoff

when the project is completed in state u and v respectively. Similarly, let ui(xl) and

vi(x
l) denote i’s payoff when the project is not completed in states u and v respectively.

The structure of CIE bets in this variant of the example is such that agent i∗ =

argmini θi - i.e., the agent who has the biggest faith in the completion of the project -

essentially signs a bilateral side bet with every other agent. The stakes of the bilateral

bet between i∗ and i 6= i∗ are equal to ui(xh)−ui(xl), namely i’s cost of interfering with
the project’s completion in state u by choosing l while all other agents choose h. It can

be shown that the problem of implementing the CIE surplus in this case is equivalent

to the problem of implementing efficient dissolution of an n-player partnership of size

Σi[ui(x
h)−ui(xl)], in which the share of partner i in the jointly owned asset is ui(xh)−

ui(x
l). Thus, using Propositions 1-3 in CGK, it can be shown that as the utility

differences ui(xh)− ui(x
l) become more symmetric across agents, it becomes possible

to implement the CIE surplus for a larger set of distributions from which the agents’

priors are drawn.

Speculation problems with more than two states
Our model of bilateral speculation problems assumes two states of Nature. This is a

greatly simplifying device, since it implies that an agent’s type is a scalar. When we

extend the model to environments with K > 2 states of Nature, an agent’s type is an

element in the K-dimensional simplex, and therefore the problem of implementing CIE

bets is a mechanism-design problem with multi-dimensional types.

The idea that CIE bets may be formally equivalent to efficient dissolution of a

partnership may be extended to these environments. However, new considerations

arise. First, the partnership may involve up to K−1 assets, and the parties’ ownership
shares may be asset-specific. Second, the values that a party attaches to any pair of
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these assets are negatively correlated. Third, the bilateral speculation problem may be

characterized by a large number of SPIC constraints, which translate into additional

constraints on the final allocations of the assets in the analogous multi-asset partnership

dissolution problem (for instance, giving different parties full ownership of different

assets may be infeasible).

Thus, when there are more than two states, our model may be formally equiva-

lent to a multi-asset partnership dissolution problem, with constraints on the agents’

valuations and the set of feasible final allocations. A general characterization of this

equivalence lies beyond the scope of the present paper.

Non-common priors versus state-dependent utility
Our main result utilizes a formal equivalence between our model of speculative trade

and a model of trade motivated by differences in tastes. The question arises, whether

our model could be re-interpreted as a standard model in the first place, since it

is well-known that state-dependent utility and subjective probability are impossible

to distinguish behaviorally. At first glance, the answer is affirmative: our model is

behaviorally equivalent to a model in which every agent i assigns probability 1
2
to each

state, and his utility function is multiplied by a state-dependent constant (θi in one

state and 1−θi in the other state). However, this re-interpretation requires us to make
two assumptions: (i) the agents’ utility from money is state-dependent ; (ii) the agents’

trade-off between money and bare-game outcomes is state-independent. We find it

extremely hard to imagine a reasonable justification for such preferences. Therefore,

θi is more convincingly interpreted as a prior belief than as a taste parameter.

Related literature
This paper follows up Eliaz and Spiegler (2005,2006), in which we analyze the problem

of designing a profit-maximizing menu of contracts for a monopolist facing a popula-

tion of consumers who differ in their ability to forecast their future tastes. In Eliaz and

Spiegler (2006), the agent’s preferences are dynamically inconsistent, and agent types

differ in the prior probability they assign to the possibility that their tastes will not

change (interpreted as their degree of naivete). Eliaz and Spiegler (2008) analyze a sim-

ilar problem with dynamically consistent preferences. Both papers study environments

in which non-common priors are necessary for price discrimination.

A distinctive feature of our model is the focus on bets made between parties who

can manipulate the bet’s outcome. Bets are essentially side payments that modify the

second-period game. We are aware of a number of precedents for this aspect of our

paper. Allaz and Vila (1993) show that producers may wish to use forward contracts
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in order to improve their situation in a future, imperfectly competitive spot market. In

their model, producers first trade in forward contracts, and then play a Cournot game

in which their payoff functions are modified by the positions they took in the forward

market. Jackson and Wilkie (2005) study two-stage games, in which players commit

to unilateral transfers conditional on the outcome of a later “bare game”. They study

the properties of subgame perfect equilibria in such games. Both works assume away

any uncertainty regarding second-period payoffs.

Wilson (1968) investigates the problem faced by a group of agents who need to make

a collective decision that generates a surplus whose value depends on an uncertain state

of Nature. The question is, how should this surplus be divided among the agents in

order to ensure Pareto optimality of the collective decision? Wilson allows for non-

common priors. Therefore, efficient sharing rules may involve side bets on the value of

future surplus. The outcome of these bets can be manipulated by the agents, because

the surplus depends on the collective decision that is made. Wilson (1968) provides

a necessary and sufficient condition for Pareto optimality of a sharing rule, and gives

examples of such rules in specific environments.

The partnership dissolution model studied by CGK was taken up by Fieseler,

Kittsteiner and Moldovanu (2003) and Jehiel and Pauzner (2004), who extended the

informational structure to allow for interdependent valuations. Neeman (1999) studies

the closely related problem of characterizing the structure of property rights for which

voluntary bargaining can resolve a public good problem efficiently.
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Appendix: Proofs

Proof of Proposition 1
Consider some CIE tuple (au, av, t). By the SPIC constraints and budget-balancedness,

t1[x(a
v
1, a

u
2)]− t1[x(a

u
1 , a

u
2)] ≤ u1(a

u
1 , a

u
2)− u1(a

v
1, a

u
2)

t1[x(a
u
1 , a

u
2)]− t1[x(a

u
1 , a

v
2)] ≤ u2(a

u
1 , a

u
2)− u2(a

u
1 , a

v
2)

t1[x(a
v
1, a

v
2)]− t1[x(a

v
1, a

u
2)] ≤ v2(a

v
1, a

v
2)− v2(a

v
1, a

u
2)

t1[x(a
u
1 , a

v
2)]− t1[x(a

v
1, a

v
2)] ≤ v1(a

v
1, a

v
2)− v1(a

u
1 , a

v
2)
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These inequalities together imply:

t1[x(a
v
1, a

v
2)]− t1[x(a

u
1 , a

u
2)] ≤ [u1(a

u
1 , a

u
2)− u1(a

v
1, a

u
2)] + [v2(a

v
1, a

v
2)− v2(a

v
1, a

u
2)]

t1[x(a
u
1 , a

u
2)]− t1[x(a

v
1, a

v
2)] ≤ [u2(a

u
1 , a

u
2)− u2(a

u
1 , a

v
2)] + [v1(a

v
1, a

v
2)− v1(a

u
1 , a

v
2)]

Because G is finite, θiui(au) + (1 − θi)vi(a
v) is finite for each agent i. Moreover,

the R.H.S in the last two inequalities are finite. But this means that t1[x(au1 , a
u
2)] −

t1[x(a
v
1, a

v
2)] is finite. ¥

Proof of Proposition 2
Assume that the CIE surplus is attained by pure speculation and consider some purely

speculative CIE tuple (au, av, t0(θ)). Then for all θ = (θ1, θ2), the bet t0(θ) maximizes

(θ1 − θ2) · [t01(xu)− t01(x
v)] (4)

subject to the SPIC constraints.

We proceed in two steps. First, we show that we can construct a bet t that sat-

isfies (2) as well as the SPIC constraints. Second, we show that (2) is necessary for

maximizing (4) subject to the SPIC constraints.

The first step of our proof relies on the following lemma.

Lemma 1 Let au and av be pure-strategy NE of G(u) and G(v), respectively, and let

t be a bet that satisfies for all y ∈ X either

t1(y)− t1(x
v) = min[d1(a

v → y),D2(a
u, av) + d1(a

u → y)] (5)

or

t1(y)− t1(x
v) = min[d1(a

v → y),−D1(a
u, av) + d1(a

u → y)] (6)

Then au and av are also pure-strategy NE of G(u, t) and G(v, t), respectively.

Proof of Lemma 1. The SPIC constraints, which ensure that au and av are also pure-
strategy NE of G(u, t) and G(v, t), may be summarized by the following inequalities
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(which use budget-balancedness). For every y ∈ X:

t1(y)− t1(x
u) ≤ d1(a

u → y) (7)

t1(y)− t1(x
v) ≤ d1(a

v → y) (8)

t1(x
v)− t1(y) ≤ d2(a

v → y) (9)

t1(x
u)− t1(y) ≤ d2(a

u → y) (10)

Suppose that d1(au → y) + D̂ ≤ d1(a
v → y). Then, by (5) and (6), inequalities (7)

and (8) are satisfied. Assume that (9) is violated. Then, by (5) and (6):

−D̂ > d1(a
u → y) + d2(a

v → y) (11)

If D̂ = −D1(a
u, av), then by the definition of D1(a

u, av), the L.H.S of (11) cannot

exceed its R.H.S., a contradiction. If D̂ = D2(a
u, av), then by our assumption that

[au, av, t0(θ)] is a purely speculative CIE tuple,

−D2(a
u, av) ≤ 0 ≤ d1(a

u → y) + d2(a
v → y)

contradicting (11). Therefore, (9) must hold. Finally, to see that (10) is satisfied, note

that the L.H.S of this inequality is equal to −d1(au → y) and by our pure speculation

assumption,

−d1(au → y) ≤ 0 ≤ d2(a
u → y)

Alternatively, suppose that d1(au → y)+D̂ > d1(a
v → y). Then, by (5), inequalities

(7) and (8) are satisfied. Assume that (10) is violated. Then, by (5):

D̂ > d1(a
v → y) + d2(a

u → y) (12)

If D̂ = D2(a
u, av), then by definition, it cannot exceed the R.H.S. of (12), a contra-

diction. If D̂ = −D1(a
u, av), then by our assumption that [au, av, t0(θ)] is a purely

speculative CIE tuple,

−D1(a
u, av) ≤ 0 ≤ d1(a

v → y) + d2(a
u → y)

contradicting (12). Therefore, (10) must hold. Finally, (9) follows from our pure

speculation assumption, which implies that

−d1(av → y) ≤ 0 ≤ d2(a
v → y)
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This concludes the proof of the lemma. ¤

Construct a bet t that satisfies (5) and (6) for every y ∈ X. Note that the only

restriction on D̂ is that it has only two possible values, D2(a
u, av) or −D1(a

u, av). Let

D̂ = D∗(au, av | θ). Then for y = xu, the bet t satisfies (2). By Lemma 1, t also

satisfies the SPIC constraints. This completes the first step of our proof.

Our next step is to show that if t satisfies the SPIC constraints, then:

−D1(a
u, av) ≤ t1(x

u)− t1(x
v) ≤ D2(a

u, av) (13)

The SPIC constraints, summarized by (7)-(10), imply that for every y ∈ X:

−d1(au → y)− d2(a
v → y) ≤ t1(x

u)− t1(x
v) ≤ d2(a

u → y) + d1(a
v → y)

But this boils down to (13). Therefore, (2) is necessary for constrained interim-

efficiency. ¥

Proof of Proposition 3
We proceed in two steps. First, let us show that implementation of the CIE sur-

plus is sufficient for efficient dissolution of the partnership hD1(a
u, av), D2(a

u, av), F i.
Assume the CIE surplus of h(u, v), G,X, F i is implementable .Consider the following
mechanism: for i = 1, 2, and for every pair of reports θ̂,

qi(θ̂) = Di(a
u, av) + tui (θ̂)− tvi (θ̂)

mi(θ̂) = tvi (θ̂)

where, for notational ease, we let tωi (θ̂) ≡ ti(x
ω| θ̂) for ω = u, v. Because tui (θ̂) and t

v
i (θ̂)

satisfy (EFF), (PS-SPIC), (IC) and (IR) it follows that the mechanism (q(θ̂),m(θ̂))

has the following properties. First, by (EFF), whenever θ̂ = θ,

q1(θ) =

(
D1(a

u, av) +D2(a
u, av) if θ1 ≥ θ2

0 if θ1 < θ2

Hence, q(θ̂) satisfies (EFF∗). Second, by (IC) and (IR), we have that for i = 1, 2, and

θ0i ∈ [0, 1],

θi[Qi(θi)−Di(a
u, av)] +Mi(θi) ≥ θi[Qi(θ

0
i)−Di(a

u, av)] +Mi(θ
0
i)
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and

θi[Qi(θi)−Di(a
u, av)] +Mi(θi) ≥ 0

These two inequalities imply that (q(θ̂),m(θ̂)) satisfies (IC∗) and (IR∗).

We now show that implementation of the CIE surplus is necessary for efficient
dissolution of the partnership hD1(a

u, av),D2(a
u, av), F i. Let (q(θ̂),m(θ̂)) be a direct

mechanism that efficiently dissolves the partnership hD1(a
u, av), D2(a

u, av), F i. Then,
for every realization of θ ∈ [0, 1]2, this mechanism satisfies (EFF∗), (IC∗) and (IR∗).

Now consider a bilateral speculation problem h(u, v), G,X, F i where the CIE surplus is
attained by pure speculation and sustained by (au, av, t). By the proof of Proposition

2, t satisfies (5) and (6), without loss of generality.

Let t(x | θ̂) be a direct mechanism for h(u, v), G,X, F i such that for every i = 1, 2,
and for all profiles of reports θ̂:

ti(x
v | θ̂) = mi(θ̂) (14)

and for every y 6= xv :

t1(y | θ̂)− t1(x
v | θ̂) = min[d1(av → y), d1(a

u → y) + q1(θ̂)−D1(a
u, av)] (15)

Because (q(θ̂),m(θ̂)) satisfies (EFF∗), q1(θ̂)−D1(a
u, av) = D∗(au, av | θ). In par-

ticular, this means that q1(θ̂)−D1(a
u, av) is equal to either D2(a

u, av) or −D1(a
u, av).

In either case, if y = xu, then by the definition of D1(a
u, av) and D2(a

u, av), d1(au →
xu) + q1(θ̂)−D1(a

u, av) cannot exceed d1(a
v → xu). Hence,

t1(x
u | θ̂)− t1(x

v | θ̂) = q1(θ̂)−D1(a
u, av) (16)

The observation that q1(θ̂) − D1(a
u, av) = D∗(au, av | θ) implies that equation

(16) becomes equation (2). This means that when y = xu, t(x | θ̂) satisfies (EFF).
By Lemma 1, this also means that t(x | θ̂) satisfies (PS-SPIC). It remains to show
that t(x | θ̂) satisfies (IC) and (IR). Since (q(θ̂),m(θ̂)) satisfies (IC∗) and (IR∗), the
following inequalities must hold for i = 1, 2, and for all θ0i ∈ [0, 1],

θiQi(θi) +Mi(θi) ≥ θiQi(θ
0
i) +Mi(θ

0
i)

θiQi(θi) +Mi(θi) ≥ θiDi(a
u, av)
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Rewriting these inequalities, we obtain

θi[Qi(θi)−Di(a
u, av)] +Mi(θi) ≥ θi[Qi(θ

0
i)−Di(a

u, av)] +Mi(θ
0
i)

θi[Qi(θi)−Di(a
u, av)] +Mi(θi) ≥ 0

By the definitions of Qi(θ
0
i) and Mi(θ

0
i), and the relation between t(x | θ̂) and q1(θ̂)

given by (16), the last two inequalities imply (IC) and (IR), respectively. ¥

Proof of Proposition 4
We prove the result stepwise.

Step 1. For every t, it is impossible to sustain a market price pω > cω in a NE of

G(ω, t).

Proof . Let (aω1 , a
ω
2 ) be a NE of G(ω, t) that satisfies min{aω1 , aω2} = pω > cω. Then, for

all i and for all ε > 0,

si(a
ω
1 , a

ω
2 ) · (pω − cω) + ti(p

ω) ≥ pω − ε− cω + ti(p
ω − ε)

where

si(a
ω
1 , a

ω
2 ) =

⎧⎪⎨⎪⎩
1 if ai < aj
1
2

if ai = aj

0 if ai > aj

Summing over i and using budget-balancedness, we obtain:

pω − cω ≥ 2(pω − ε− cω)

for all ε > 0. But this inequality implies that pω = cω, a contradiction.

Step 2. If the CIE surplus is attained by pure speculation, then the CIE surplus is

|θ1 − θ2| · (cH − cL) (17)

Proof . If the CIE surplus is attained by pure speculation, then any CIE tuple

(aL, aH , t) satisfies pω = cω. Since this means that the sellers’ bare-game payoff is

zero in both states, the CIE surplus may be written as (θ1 − θ2)(t
L
1 − tH1 ), where

tL1 ≡ t1(c
L) and tH1 ≡ t1(c

H). In state H, each seller can unilaterally lower the price to

cL. This deviation is not profitable if the following SPIC constraint holds: for every
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seller i, tHi ≥ cL − cH + tLi . By budget-balancedness,

cL − cH ≤ tL1 − tH1 ≤ cH − cL (18)

Therefore, the CIE surplus is bounded from above by |θ1 − θ2| · (cH − cL). To see

that this expression can be attained, define t(x | θ) as follows. When θ1 ≥ θ2, let

tL1 − tH1 = cH − cL. Conversely, when θ1 < θ2, let tL1 − tH1 = cL − cH . In both cases, let

t1(p) = tL1 for every p ≤ cL, and let t1(p) = tH1 for every p > cL. Because t is a step

function, and because aω is a NE in G(ω), all SPIC constraints hold, and the surplus

is |θ1 − θ2| · (cH − cL).

Step 3. Total interim surplus evaluated at any (aL, aH , t), with t satisfying the SPIC,
is at most |θ1 − θ2| · (cH − cL).

Proof. Denote p∗ ≡ max{pH , pL} and p∗ ≡ min{pH , pL}. Let ω∗ and ω∗ denote the

states in which p∗ and p∗ occur, and let c∗ and c∗ denote the marginal costs in states

ω∗ and ω∗ respectively. Let θ∗i be seller i’s prior on ω
∗, and denote his market share in

ω∗ by si.

By Step 1, p∗ ≤ c∗ and p∗ ≤ c∗. If p∗ = c∗ and p∗ = c∗, then by Step 2, the proof

is complete. Now assume that one of these inequalities holds strictly. Because both

sellers can unilaterally lower the market price from p∗ to p∗ in state ω∗, the following

SPIC constraints must hold:

s1 · (p∗ − c∗) + t1(p
∗) ≥ p∗ − c∗ + t1(p∗)

s2 · (p∗ − c∗) + t2(p
∗) ≥ p∗ − c∗ + t2(p∗)

Using budget-balancedness, we obtain:

p∗ − c∗ − s1 · (p∗ − c∗) ≤ t1(p
∗)− t1(p∗) ≤ s2 · (p∗ − c∗) + c∗ − p∗ (19)

Suppose p∗ = c∗. Then, p∗ < c∗ and c∗ < c∗. Because cH > cL it follows that

ω∗ = H. But in this case the SPIC constraints given by (19) imply that total surplus

is less than (17). It follows that p∗ < c∗. This means that there is exactly one seller i

who plays ai = p∗ in state ω∗. If both sellers played p∗, then either one of them could

deviate upward. This deviation would leave market price (and therefore the transfers)

unaffected, but it would save the deviator a bare-game loss. Without loss of generality,

assume that seller 1 sustains the market price p∗ in state ω∗. Let a2 > p∗ denote seller

2’s action in this state.
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It follows that the sellers’ total interim surplus is given by the following expression:

(p∗ − c∗) · (s1θ∗1 + s2θ
∗
2) + (1− θ∗1) · (p∗ − c∗) + (θ

∗
1 − θ∗2) · [t1(p∗)− t1(p∗)]

Note that the first two terms are non-positive, and one of them is strictly negative,

by assumption. Therefore, if we prove that the third term does not exceed (17), we

complete the proof.

Suppose that θ∗2 ≥ θ∗1. Then, by (19), total interim surplus is bounded from above

by

(p∗ − c∗) · (s1θ∗1 + s2θ
∗
2) + (1− θ∗1) · (p∗ − c∗) + (θ

∗
1 − θ∗2) · [p∗ − c∗ − s1 · (p∗ − c∗)]

Because s2 = 1− s1, this expression may be rewritten as

(p∗ − c∗) · θ∗2 + p∗ · (1− θ∗2)− c∗ · (1− θ∗1) + c∗ · (θ∗2 − θ∗1)

Since c∗ ≤ cH , this expression is at most

(p∗ − c∗) · θ∗2 + p∗ · (1− θ∗2)− c∗ · (1− θ∗1) + cH · (θ∗2 − θ∗1)

By adding and subtracting c∗θ
∗
2, we may rewrite this expression as

(p∗ − c∗) · θ∗2 + (p∗ − c∗) · (1− θ∗2) + (θ
∗
2 − θ∗1) · (cH − c∗)

Because p∗ ≤ c∗ and p∗ < c∗, the above expression is strictly below (θ
∗
2− θ∗1) · (cH − c∗).

But since θ∗2 ≥ θ∗1 and c∗ ≥ cL,

(θ∗2 − θ∗1) · (cH − c∗) < (θ
∗
2 − θ∗1) · (cH − cL)

Our assumption that θ∗2 ≥ θ∗1 implies that whether ω
∗ = ωH or ω∗ = ωL, the R.H.S. of

the above inequality is |θ1 − θ2| · (cH − cL).

Now suppose that θ∗1 > θ∗2. In addition to the SPIC constraints given by (19), there

is an additional SPIC constraint, which prevents seller 1 from raising the market price

from p∗ to a2. There are three cases to consider.

Case 1 : a2 < p∗. Seller 1 can deviate from a1 = p∗ to a01 ∈ (a2, p∗). The SPIC
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constraint that prevents him from doing so is

p∗ − c∗ + t1(p∗) ≥ t1(a2)

But note that in state ω∗, seller 2 can unilaterally lower the market price from p∗ to

a2. The SPIC constraint that prevents him from doing so is

s2 · (p∗ − c∗)− t1(p
∗) ≥ a2 − c∗ − t1(a2)

Combining these two constraints, we obtain

t1(p
∗)− t1(p∗) ≤ c∗ − c∗ + p∗ − a2 + s2 · (p∗ − c∗)

but the R.H.S of this inequality is lower than cH − cL.

Case 2 : a2 > p∗. Seller 1 can deviate from a1 = p∗ to a01 = p∗. The SPIC constraint

that prevents him from doing so is

p∗ − c∗ + t1(p∗) ≥ p∗ − c∗ + t1(p
∗)

This constraint implies t1(p∗)− t1(p∗) ≤ p∗ − p∗ < 0 < cH − cL.

Case 3 : a2 = p∗. Seller 1 can deviate from a1 = p∗ to a01 > a2 or a01 = a2. The

SPIC constraint that prevents him from carrying out either of these deviations is

p∗ − c∗ + t1(p∗) ≥ max[0,
1

2
(p∗ − c∗)] + t1(p

∗)

This constraint implies t1(p∗)− t1(p∗) ≤ p∗ − c∗ −max[0, 12(p∗ − c∗)] < 0 < cH − cL.

We have thus established that the SPIC constraints that result from setting p∗ < c∗

imply that total interim surplus is below (17). ¥

Proof of Proposition 5
If there is no trade in both states, there is no scope for speculation. Let ω denote

a state with trade and let pω denote the market price in this state. Each agent can

unilaterally impose no trade in ω (the seller can submit an ask price above the buyer’s

bid price, and the buyer can submit a bid price below the seller’s ask price). Therefore,
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the SPIC constraints that prevent these deviations are:

pω − c+ ts(p
ω) ≥ ts(NT ) (20)

ω − pω − ts(p
ω) ≥ −ts(NT )

Hence,

c− pω ≤ ts(p
ω)− ts(NT ) ≤ ω − pω (21)

Suppose there is trade in only one state. Then the total interim-expected surplus

is given by

πs(p
ω − c) + πb(ω − pω) + (πs − πb) · [ts(pω)− ts(NT )] (22)

where πi denotes agent i’s prior on ω.

By (21), total surplus cannot exceed max{πb, πs} · (ω − c). Since we are free to

choose the state in which trade occurs, we can set ω = h. Therefore, total surplus is

at most:

max{πb, πs} · (h− c) (23)

Now suppose that trade occurs in both states. Then the inequalities in (20) are the

SPIC constraints that prevent each agent from unilaterally imposing no trade in each

state. Hence,

pl − ph + c− l ≤ ts(p
h)− ts(p

l) ≤ pl − ph + h− c (24)

while total surplus is

−c+ θbh+ (1− θb)l + (θs − θb) · [ph − pl + t(ph)− t(pl)]

By (24), total surplus is bounded from above by:

max{θb, θs}(h− c) + (1−min{θb, θs})(l − c) (25)

which is below (23), since l < c. It follows that the value of the CIE surplus is given

by (23), and that the market outcome induced by the CIE surplus is ex-post efficient.

We now proceed to prove part (ii). It is easy to see that when we plug the values

of ph and ts(T ) − ts(NT ), as stated in part (ii), into expression (1), we obtain (23).

Therefore, it remains to show that the SPIC constraints are satisfied. Consider state

h. The buyer’s payoff is h−c
2
− ts(T ). If the buyer raises his bid price, he raises the

market price, and therefore loses in terms of bare-game payoffs, without affecting the

transfer. If he lowers his bid price, he imposes no trade, in which case his net payoff is
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−ts(NT ). Because ts(T ) − ts(NT ) is h−c
2
if θs > θb and c−h

2
otherwise, this deviation

is not profitable. The seller’s payoff is h−c
2
+ ts(T ). If he lowers his ask price, he loses

in terms of bare-game payoffs, without affecting the transfer. If he raises his ask price,

he imposes no trade, in which case his net payoff is ts(NT ). It follows that neither

deviation is profitable. Now consider state l. Since pls is arbitrarily high and plb is

arbitrarily low, neither agent has an incentive to enforce trade unilaterally. ¥
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