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Abstract. In the text-book model of dynamic Bertrand competition,
competing firms meet the same demand function every period. This is not a
satisfactory model of the demand side if consumers can make intertemporal
substitution between periods. Each period then leaves some residual demand
to future periods, and consumers who observe price under-cutting may cor-
rectly anticipate an ensuing price war and therefore postpone their purchases.
Accordingly, the interaction between the firms no longer constitutes a repeated
game, and hence falls outside the domain of the usual Folk theorems.
We analyze collusive pricing in such situations, and study cases when con-

sumers have perfect and imperfect foresight and varying degrees of patience.
It turns out that collusion against patient and forward-looking consumers is
easier to sustain than collusion in the text-book model.
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1. Introduction

The Coase conjecture, Coase (1972), stipulates that a monopolist selling a new
durable good cannot credibly commit to the monopoly price, because once this price
has been announced, the monopolist will have an incentive to reduce his price in order
to capture residual demand from consumers who value the good below the monopoly
price. This in turn, Coase claims, would be foreseen also by consumers with val-
uations above the monopoly price, and therefore some of these (depending on their
time preference) will chose to postpone their purchase in anticipation of a price fall.
Coase’s argument is relevant not only for a monopoly firm in a transient market for a
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new durable good, but also for oligopolistic firms in a perpetually ongoing market for
durable and non-durable goods. If such firms maintain a price above the competitive
price, based on a threat of a price war or other severe punishments in case of defection,
as the literature on repeated games suggests, then consumers might foresee such price
wars in the wake of a defection, and hence not buy from a firm that slightly undercuts
the others, but instead postpone purchase to the anticipated subsequent price war.
Such dynamic aspects of the demand side runs against the spirit of the standard
text-book model of dynamic competition viewed as a repeated game.1 Indeed, the
interaction is no longer a repeated game, since the market demand faced by the firms
today in general depends on history, both through consumers expectation formation
and through their residual demand from earlier periods. Consequently, a model with
consumers who are allowed to make intertemporal substitution between periods falls
outside the domain of the standard Folk Theorems. Moreover, unlike in the case of a
monopoly for a new durable product, this application of Coase’s argument leads to a
very different conclusion: under many circumstances such intertemporal substitution
and foresight on behalf of the consumers in a recurrent market setting facilitates,
rather than undermines, monopoly pricing.2

There is a literature on the Coase conjecture, building on models of consumers who
have the possibility of intertemporal substitution and are endowed with foresight, see
e.g. Gul, Sonnenschein and Wilson (1986), Gul (1987) and Ausubel and Deneckere
(1987). We here model consumers very much in the same vein. However, while the
demand structure in those models is transient, we here develop a perpetual demand
structure, more precisely an infinite sequence of overlapping cohorts of consumers
entering and leaving the market. All consumers have a fixed life span which we
normalize to one time unit, while each market period, during which firms’ prices are
held constant, has length ∆ = 1/m, for some positive integer m. A new cohort of
consumers enters the market in each market period, and the size of each cohort is
∆. Hence, each consumer lives during m consecutive market periods. The good
in question is assumed to be sold in indivisible units, and each consumer wants to
acquire at most one unit of the good in her life time. Consumers differ as to their
individual valuation of the good. In each new cohort, the individual valuation is
distributed according to a fixed cumulative distribution function. Following the
above-mentioned analyses, we treat firms as players in the game-theoretic sense, but
model consumers as price-taking and expectation-forming economic agents with no
strategic incentive or power. Their aggregate behavior will constitute a state variable

1See e.g. Tirole (1988) for repeated-games models of dynamic oligopoly, and Fudenberg and
Tirole (1991) for various versions of the folk theorem.

2However, we show that in some special cases the effect may go in the same direction as in the
Coase conjecture: collusion may be more difficult if consumers have foresight.
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in a dynamic game played by the firms. Most of our analysis is focused on the case
of consumers with perfect foresight, but we also consider a case when consumers have
imperfect foresight.
This paper is not a plea that analysts should always assume all economic agents to

have perfect foresight. We believe that consumers and firms may more realistically
be modelled as having more or less imperfect foresight. Our position is rather
that the contrast in current models of dynamic oligopolistic competition between, on
the one hand, the intertemporal substitution possibilities, great sophistication, and
expectations coordination ascribed to firms, and, on the other hand, the complete
lack of intertemporal substitution and sophistication ascribed to consumers, should
be replaced by a milder contrast. Even taking a small step in this direction requires
the analyst to go outside the familiar class of repeated games to the less familiar class
of stochastic games (which contains repeated games as a subclass). We here outline
in the simplest possible context how such a generalization can be made, and what
are its most direct implications.
There are other models of dynamic Bertrand competition that depart from the

repeated-games paradigm. Kirman and Sobel (1974) consider the role of inventories,
and Maskin and Tirole (1988) and Wallner (1999) consider the role of alternating
moves. Selten (1965) and Radner (1999) introduce consumers who switch suppliers
according to observed prices, though not immediately or fully. All three strands of
this literature model a dynamic oligopolistic market as a dynamic or stochastic game.3

However, to the best of our knowledge, we are the first to model the demand side
in dynamic oligopoly as emanating from intertemporally substituting and forward-
looking consumers.
The paper is organized as follows. The model is developed in Section 2. Section

3 considers briefly the special case ∆ = 1, when a market period is a life time for a
consumer, resulting in a repeated game of the usual type. Section 4 identifies, for
any length ∆ = 1/m of the market period, the “text-book” model that we use as a
bench-mark for comparison. Section 5 treats in some detail the case when a market
period is half the life span of a consumer. Most of the action comes out already
in this case. Section 6 considers shorter market periods. The special case of linear
demand is analyzed in detail in Section 7, and Section 8 concludes.

2. The model

Suppose there are n firms in the market for a homogenous indivisible good. The
market operates over an infinite sequence of market periods k ∈ N = {0, 1, 2, ...}. All
firms simultaneously announce their ask prices every period. Let xik ≥ 0 be the price

3 For a discussion of such games and an equilibrium characterization, see Dutta (1995).
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that firm i asks in period k, and let xk = (x1k, ..., xnk) be the vector of ask prices
in that period. All consumers are assumed to observe all ask prices in each period,
and buy only from the firms with the lowest ask price. The lowest ask price in any
period k,

pk = min{x1k, ..., xnk},

will accordingly be called the market price in that period. If more than one firm asks
the lowest price, then we assume that sales are split equally between them.4 Each
market period is of length ∆ = 1/m, for some positive integer m. Since prices are
fixed during each period, ∆ is the duration of the commitment that firms make to
their ask prices. The firms face no capacity constraint, and production costs are
normalized to zero. Hence, each firm’s profit in a market period is simply its sales
multiplied by its ask price. They all discount future profits by the same discount
factor δ ∈ (0, 1) between successive market periods. We assume that the discount
factor can be derived from an underlying discount rate r > 0 over continuous time in
the usual way, δ = exp (−r∆).
There is a continuum of consumers, all with a fixed life span of one time unit -

which thus amounts to m market periods. A new cohort of consumers enters the
market in each market period. The size of each cohort is ∆ = 1/m. Hence, except
for the initial m−1 market periods, the size of the consumer population is constantly
equal to one in each market period. Our analysis is focused on market periods k = m,
m+ 1, m+ 2, ..., that is, when each market period contains all m consumer cohorts
and the total population size is 1.
Consumers differ as to their valuation of the good. In each cohort, the individual

valuation v is distributed according to some cumulative distribution function F :
R+ → [0, 1]. Each consumer wants to acquire at most one unit of the good in her
life time. Accordingly, we define D (p) = 1−F (p) as the static aggregate demand at
(market) price p: this is the quantity that would be sold if the market period were
one life span, ∆ = 1, and if all consumers were to face the same price p. However,
when market periods are shorter, a consumer may face different market prices during
his or her life. A consumer with valuation v derives utility v − p from buying one
unit of the good at price p in the current market period, and utility β (v − p) from
buying one unit of the good at price p one market periods later, where β ∈ [0, 1]
is the consumers’ subjective discount factor between successive market periods (and
may hence depend on the length ∆ of each market period). We will pay special
attention to (a) maximally patient consumers, with β = 1, (b) maximally impatient

4We assume that the number of consumers is very large and model the consumer population as
a continuum.
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consumers, with β = 0, and (c) consumers with the same time preference as the firms,
β = δ = exp (−r∆).
Moreover, we assume that

[A1] Consumers hold identical expectations about future prices.

[A2] There is no resale.

3. When a market period is a consumer’s life span

The standard approach to dynamic oligopolistic competition applies when ∆ = 1:
The firms face one and the same demand function in each market period. Hence,
in this case we do have a repeated game, and the Folk Theorem does apply. With
a valuation distribution F , the firms with the lowest ask price, p, face the static
aggregate demand D(p) = 1− F (p).
A trigger strategy profile, in which all firms quote the same price p∗ in all periods

until a price deviation occurs, and thereafter quote the price zero, constitutes a
subgame perfect equilibrium in this infinitely repeated game if and only if

p∗D(p∗)
n (1− δ)

≥ pD(p) (1)

for all p < p∗. The quantity on the left hand side is the present value of the firm’s
share of the stream of collusive industry profits, and the quantity on the right hand
side is the profit to a firm which under-cuts the collusive price by instead asking the
price p.
For later comparisons, it is sometimes convenient to write inequality (1) in the

form
1

n
p∗D(p∗) ≥ ¡1− e−r¢ pD(p) , (2)

where r is the firms’ discount rate.
We also note that if the revenue function R(p) = pD(p) is single-peaked and

continuous, then the supremum of the right-hand side of equation (1) is obtained at
p = p∗, granted p∗ does not exceed the monopoly price. Hence, the deviating firm
then wants to undercut the going price only slightly, so a collusive price p∗ is subgame
perfect if and only if δ ≥ 1− 1/n, or, equivalently, if and only if

r ≤ ln
µ

n

n− 1
¶
. (3)



Bertrand competition with intertemporal demand 6

4. The text-book model

What is the relevant “text-book” model to use as a bench-mark for comparison when
the market periods are shorter? In the standard analysis of dynamic oligopoly, the
firms meet the same demand function in each period. Suppose, thus, that the life
span of a consumer is not one time unit, as in our model, but instead one market
period, no matter how long or short this is. Hence, if the length of each market
period is ∆ = 1/m, then the demand in any period with market price p is simply
D (p) /m, irrespective of the conditions in all other periods.5 We will refer to this as
the text-book model.
When the n firms face the same demand function D/m in each period, then

a trigger-strategy profile, in which all firms quote the same price p∗ in all periods
until a price deviation is detected, from which time on they all quote the price zero,
constitutes a subgame perfect equilibrium of the text book model if and only if

p∗D(p∗)
nm (1− δ)

≥ pD(p)
m

(4)

for all p < p∗, where δ = e−r/m is the firms’ discount factor between successive market
periods of length ∆ = 1/m. Equivalently,

1

n
p∗D(p∗) ≥ ¡1− e−r/m¢ pD(p) . (5)

The only difference, when comparing with the special case ∆ = 1 in our model, see
(2), is the discount factor, due to the shorter market periods.
Moreover, just as in the case ∆ = 1 of our model: if the revenue function R is

single-peaked and continuous, then any collusive price p∗ not exceeding the monopoly
price is sustainable in subgame perfect equilibrium in the text-book model if and only
if

r ≤ 1

∆
ln

µ
n

n− 1
¶
, (6)

c.f. condition (3).
Having spelled out the text-book model, we return to our model.

5. When a market period is half a life span of a consumer

In the case ∆ = 1/2, firms face two consumer groups in every market period, each
group being half the size of the consumer group in the case∆ = 1. Aggregate demand
in any market period (after the very first) can be decomposed into two components,

5One may equivalently assume that consumers can buy only in the first market period of their
life.
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one arising from all the young, and another, residual demand, arising from those old
individuals who did not buy while young. The demand of the young depends not only
on the current market price but also on their expectations about the market price in
the next period. If a young individual with valuation v faces a current market price
p and expects the market price pe in the next period, then she should buy in the
present period if and only if her consumer surplus from buying now, v − p, exceeds
or equals the discounted expected surplus from buying in the next period, (v − pe) β,
where β is her discount factor between periods of length ∆ = 1/2. In particular, if
β < 1 and the expected price next period equals the current price, pe = p, then all
young consumers with valuation v ≥ p will buy in their first period. By contrast,
if the expected price next period is zero, then only those young consumers who have
valuation v ≥ p/ (1− β) will buy in the present period. All young individuals with
lower valuations prefer to wait until the next period. In general, the cut-off valuation
level, when the current price is p and the price expected for the next period is pe, is

v+ =
p− βpe

1− β
. (7)

This cohort’s demand in the next period, when they are old, stems from those
who have valuations below v+. Their residual demand is D+

2 (p) = [F (v
+)− F (p)] /2

for all p ≤ v+ and D+
2 (p) = 0 for all p > v

+. The residual demand function D+
2 is

thus determined by the “residual” valuation v+, which, in turn, depends on previous
prices - directly via p and indirectly via the earlier expectation pe. Since the residual
demand function affects the profit function of the firms in that period, the interaction
no longer constitutes a repeated game. Instead, we face a stochastic game with state
variable v+.6

We assume that firms have complete information about the market interaction
and that they observe all past prices. In particular, all firms know the residual
valuation v+ inherited from the previous period. A strategy for a firm is thus a
rule that specifies its ask price in each market period, given any history of prices
(and thus also of residual valuations) up to that period. Firms’ price strategies
constitute a subgame perfect equilibrium provided each firm maximizes its discounted
future stream of profits after any price history, given all other firms’ strategies and
the residual valuation v+. In particular, a trigger strategy can be defined in much
the same way as in the standard repeated-games model: All firms ask the same price
p∗ in the first period, and continue to do so as long as all firms quoted that price in
all preceding periods. In the event of any deviation from that price, all firms ask

6For a discussion of stochastic (sometimes called Markovian) games, see Fudenberg and Tirole
(1991), chapter 12. For a discussion of equilibrium characterization in such games, see Dutta (1995).
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the price zero in all subsequent periods.7 The subsequent analysis in this study is
restricted to such trigger strategies.8

It is easily verified that if consumers have perfect foresight, that is, if they correctly
anticipate the price war that follows upon any price deviation, then such a trigger-
strategy profile constitutes a subgame perfect equilibrium if and only if

p∗ [1− F (p∗)]
2n (1− δ)

≥ p
2

·
F (p∗)− F (p) + 1− F

µ
p

1− β

¶¸
(8)

for all p < p∗. The factor 1/2 on both sides of this inequality reflects the fact
that half the population in any period is young while the other half is old. The
left-hand side is the present value of the stream of future profits to each firm, from
the present period onwards, when the price p∗ is asked by all firms in all periods.
The expression on the right-hand side is the current profit to a firm that unilaterally
deviates in the present period - in all later periods such a deviator earns zero profit.
The expression in large square brackets thus represents the current demand faced by
the deviating firm when its current ask price is p < p∗. This demand is composed of
two components: the residual demand from the old who did not buy when they were
young, [F (p∗)− F (p)] /2, and the demand from the young, [1− F (v+)] /2, where
v+ = p/ (1− β) is the residual valuation when pe = 0, see equation (7).
Rearranging terms, and substituting the firms’ discount rate r for their discount

factor δ (between periods of length ∆ = 1/2), inequality (8) can be re-written as

1

n
R(p∗) ≥ ¡1− e−r/2¢ p ·D(p)−D(p∗) +Dµ p

1− β

¶¸
. (9)

The left-hand side is identical with the left-hand side in the incentive constraint (2)
in the case ∆ = 1, but the right-hand sides in the two cases differ.
To analyze the conditions under which equation (9) holds we will focus on two

countervailing forces at work when the market period shrinks: one working against
the consumers, to be called the collusive force, and another force, working for the
consumers, to be called the competitive force.

5.1. The collusive force - the young may not bite. When a young consumer,
with perfect foresight, sees a price below p∗ he knows that an even lower price is
coming in the next period. Provided he is patient he will wait with gleeful anticipation
for the price war. That will diminish the fruits to the firm that undercuts the going

7Recall that the marginal cost is zero, so to quote the price zero is a Nash equilibrium of the
stage game in any given period, irrespective of the inherited residual valuation.

8In particular, when we write that such and such an outcome is sustainable in subgame perfect
equilibrium, we mean supported by a subgame perfect trigger-strategy profile.
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price. Such a reduction of deviation profits may then convince a prospective under-
cutter to not drop his price in the first place - which facilitates collusion among the
firms.9

To make the point most stark, consider the case of consumers who are maximally
patient, β = 1.10 Expressed in terms of the discount rate r, inequality (9) then boils
down to

1

n
R(p∗) ≥ ¡1− e−r/2¢ p [D(p)−D(p∗)] (10)

for all p < p∗. Note that a deviating firm now only sells to old consumers, because
every young consumer - regardless of his valuation - prefers to wait for the zero price
in the next period. In comparing the incentive constraint with that in the case
∆ = 1, we note that e−r/2 > e−r and D(p∗) > 0, so the right-hand side of (10) is less
than the right-hand side in (2), at any price p. Moreover, in comparison with the
text-book model we note that the right-hand side in (10) is less than the right-hand
side in (5), again because D(p∗) > 0. In sum:

Proposition 1. Suppose that consumers have perfect foresight and are maximally
patient. Any price that can be sustained in subgame perfect equilibrium when ∆ = 1
can also be sustained in subgame perfect equilibrium when ∆ = 1/2. Moreover, any
price that can be sustained in subgame perfect equilibrium in the text-book model
when ∆ = 1/2 can be sustained in the present model when ∆ = 1/2.

In other words, patient consumers with perfect foresight are more likely to face
collusive prices when the market period is shorter than when it is longer, and the
same holds when comparing the present model with the text-book model, at the
fixed length ∆ = 1/2 of the market period.

5.2. The competitive force - the old always bite. When market periods
are shorter there is, however, also an advantage to price under-cutting, as compared
with the case ∆ = 1, and as compared with the text-book model. This advantage
arises from the presence of old consumers who have not yet bought, and who may
be tempted to do so if the price falls. As long as the undercutting firm does not
lose too many younger consumers - who may wait for the ensuing price war - this
residual demand from the old might make price cuts more profitable than in the

9The logic is similar to the collusive implication of a policy that promises to ”match the com-
petitor’s price.” In this case a firm that undercuts the competition gets no additional sales because
consumers stay with their original seller - they simply get their seller to match the undercuttin price.
10In order to avoid complete temporal indifference, by “β = 1” we actually mean the case when

β is marginally below 1, as when taking the limit β → 1 from below. Alternatively, one could here
think of a lexicographic preference for early timing.
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case ∆ = 1 and in the text-book model. Consequently, collusion against impatient
consumers may in fact be harder to sustain when market periods are shorter, and
also in comparison with the text-book model for the shorter period.
Again to make the point most stark, consider the case when young consumers buy

from an undercutting firm even if they expect an even lower price to follow. This
is the case if consumers are maximally impatient, β = 0. Inequality (9) then boils
down to

1

n
R(p∗) ≥ ¡1− e−r/2¢ p [2D(p)−D(p∗)] , (11)

for all p < p∗. First, it is clear that the right-hand side exceeds or equals that in the
text-book model, see condition (5), since D is by construction non-increasing (and
hence D(p)−D(p∗) ≥ 0 for all p < p∗). Hence, if the demand function D is strictly
decreasing, then collusion is in fact harder to sustain in the present model than in
the text-book model.
Moreover, in comparing inequalities (2) and (11), we note that the maximal de-

viation payoff is higher when ∆ = 1/2 than when ∆ = 1 if and only if11¡
1 + e−r/2

¢
max
p∈[0,p∗]

pD(p) < max
p∈[0,p∗]

p [2D(p)−D(p∗)] . (12)

The analysis here becomes somewhat involved, however. Instead of analyzing (12)
for a general demand function D, we therefore illustrate this possibility in a special
case.
Suppose valuations are concentrated at two levels, v1 and v2, where v1 < v2. Let

θ denote the population share at the high valuation, v2, and suppose without loss of
generality that v2 is the monopoly price, i.e., θv2 > v1. From inequality (11) we see
that the monopoly price, p̂ = v2, is not sustainable in subgame perfect equilibrium
when ∆ = 1/2 if

θv2
n
<
¡
1− e−r/2¢ (2− θ) v1 (13)

By contrast, in the case ∆ = 1, the monopoly price is sustainable in subgame perfect
equilibrium if

θv2
n
≥ ¡1− e−r¢ θv2 , (14)

or, equivalently, if 1− e−r ≤ 1/n. Hence, both conditions hold if

1− e−r ≤ 1

n
<
¡
1− e−r/2¢ v1 (2− θ)

θv2
. (15)

11We have here used the identity (1− e−r) = ¡1− e−r/2¢ ¡1 + e−r/2¢.
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Proposition 2. Suppose that consumers have perfect foresight and are maximally
impatient. If the valuation distribution is concentrated at two distinct values sat-
isfying inequality (15), then the monopoly price is sustainable in subgame perfect
equilibrium when ∆ = 1 but not when ∆ = 1/2. Moreover, any price that can be
sustained in subgame perfect equilibrium in the present model when ∆ = 1/2 can
also be sustained in the text-book model when ∆ = 1/2.

In other words, impatient consumers with perfect foresight are less likely to see
collusive prices when the market period is short than when it is long, and the same
holds when comparing the present model with the text-book model, at the fixed
length ∆ = 1/2 of the market period.
Remark: That condition (15) is non-vacuous is easily checked. For example,

all parameter combinations in a neighborhood of the parameter combination n = 2,
e−r/2 = 0.72, θ ≤ 0.2 and v1/θv2 = 1 satisfy the condition.
5.3. Easier to collude against more patient consumers. We here generalize
the above observations concerning consumers’ patience. Consider thus any level of
consumer patience β. Recall the incentive condition (9) for consumers with perfect
foresight and arbitrary β. From the right-hand side of this inequality it immediately
follows that the more patient are consumers, that is, the higher is β, the lower is the
payoff to any one firm under-cutting a given price p∗. Consequently, firms find it
easier to collude when consumers are patient:

Proposition 3. Suppose consumers have perfect foresight and their discount factor
is β ∈ [0, 1]. For any price p∗ and any β there exists a critical discount factor δ̄ < 1
for the firms, such that p∗ is a subgame perfect equilibrium price if and only if δ ≥ δ̄.
Moreover, δ̄ is decreasing in β.

In particular, we already know that when β = 1, then δ is less than 1− 1/n, the
cut-off discount factor in the case ∆ = 1. If δ exceeds 1− 1/n when β = 0 - as for
instance in the example discussed in the previous subsection - it follows by continuity
that there is some intermediate level of consumer patience β at which δ̄ = 1 − 1/n.
At that β, the cut-off discount factor for firms is thus the same as in the case ∆ = 1.12

5.4. Harder to collude against consumers with imperfect foresight. An-
other comparison that may be relevant is between consumers with perfect foresight
and consumers who always expect the current market price to prevail also in the
future - what we will call “martingale expectations.” More precisely, we here assume

12Of course, the exact cut-off value δ depends on the price p∗ that is being sustained in equilibrium.
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pek+1 ≡ pk in all market periods k. When faced with a price cut, all young consumers
with valuations above the new market price will then buy, just as the case of maxi-
mally impatient consumers. Hence, for any time preference β ∈ (0, 1) on behalf of
the consumers, the profit to a deviating firm with ask price p < p∗ is now

p

2
[2D(p)−D(p∗)] , (16)

while the profit to the same deviation would have been

p

2

·
D(p)−D(p∗) +D

µ
p

1− β

¶¸
, (17)

if all consumers had perfect foresight (see right-hand side of (9)). The latter quantity
never exceeds the first, by monotonicity of the demand function D, so the range of
collusive prices against consumers with perfect foresight always contains the range of
collusive prices against consumers with martingale expectations, for any time prefer-
ence β > 0 that the consumers may have. In this sense, consumers are worse off if
they (are known by the firms to) have perfect foresight - consumers’ foresight unam-
biguously facilitate collusion against them. We believe this qualitative conclusion
to also hold in intermediate cases, when, say, some consumers have perfect foresight
and others hold martingale expectations, as well as when all or some consumers form
expectations between these two extremes.

6. Shorter market periods

If ∆ = 1/m, for some integer m > 2, then firms face more than two consumer cohorts
in each market period. Except for the oldest, all others have the option of postponing
their purchase to a later market period. Thus, all but the oldest base their buying
decisions in part on expectations about future market prices. Do the qualitative
observations concerning the case ∆ = 1/2 carry over to these more complex cases?
The answer turns out to be affirmative: the former analysis is readily generalized,
and though quantitatively distinct, the results are qualitatively the same.
In each market period, firms now face m > 2 consumer cohorts, each of size

∆ = 1/m < 1/2. Aggregate demand in any market period can thus be decomposed
into three components, one arising from all the young, another arising from the
oldest individuals who did not yet buy, and a third, new component arising from
individuals in intermediate cohorts who did not yet buy. If a young or intermediate-
aged individual with valuation v faces a current market price p and expects market
prices

¡
pe1, p

e
2, ..., p

e
m−1

¢
in the following m − 1 periods, then she should buy in the

present period if and only if her consumer surplus from buying now, v − p, exceeds
or equals the expected discounted surplus, (v − peh)βh, from buying in any of the
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remaining market periods during her life time, where β ∈ [0, 1] is the consumers’
discount factor between successive market periods of length ∆ = 1/m, and h is the
postponement expressed in terms of the number of market periods.
If the prices in future periods are expected not to be lower than the price expected

in the next period, then the cut-off valuation level, when the current price is p and
the price expected for the next period is pe, is

v+ =
p− βpe

1− β
, (18)

precisely as in the case ∆ = 1/2, see equation (7).
As before, we here focus on trigger strategies. More exactly, all firms ask the

same price p∗ in the first m periods, and continue to post that price as long as all
firms quote that price. In the event of any deviation from that price, all firms ask the
price zero in all subsequent periods. It is easily verified that if consumers correctly
anticipate the market price to fall to zero after any price deviation, and otherwise to
remain constant, then such a trigger strategy profile constitutes a subgame perfect
equilibrium if and only if

p∗ [1− F (p∗)]
mn (1− δ)

≥ p

m

·
F (p∗)− F (p) + (m− 2)G (p, p∗) + 1− F

µ
p

1− β

¶¸
, (19)

for all p < p∗, where

G (p, p∗) = max
½
0, F (p∗)− F

µ
p

1− β

¶¾
. (20)

The factor 1/m on both sides represents the size of each cohort, the population share
of young individuals (in their first market period), and of old individuals (in their last
market period), and (m− 2) /m is the population share of individuals in intermediate
ages. The left-hand side of equation (19) is the present value of the stream of future
profits to each firm, from the present period onwards, when the price p∗ is asked
by all firms in all periods. The right-hand side is the current profit to a firm that
unilaterally deviates in the current period by instead asking the price p < p∗ (the
profit in all subsequent periods being zero). The deviating firm faces a demand that
can be decomposed into three components: the residual demand from the old who
did not yet buy, [F (p∗)− F (p)] /m, the residual demand from those individuals in
intermediate cohorts who did not yet buy, (m− 2)G (p, p∗) /m, and the demand from
the young, (1− F [p/ (1− β)]) /m.
Note that the contribution G (p, p∗) from each intermediate cohort, between the

young and the old, is zero for all prices p above p̄ = (1− β) p∗ - then they rather wait
one period. Rearranging terms, inequality (19) can thus be re-written as



Bertrand competition with intertemporal demand 14

1

n
R(p∗) ≥ ¡1− e−r/m¢H (p, p∗) , (21)

where r is the firms’ discount rate, and

H (p, p∗) =

 p
³
D (p) + (m− 1)

h
D
³

p
1−β
´
−D(p∗)

i´
for p < p̄

p
³
D (p) +D

³
p
1−β
´
−D(p∗)

´
for p̄ ≤ p ≤ p∗

. (22)

The left-hand side of (21) is identical with the corresponding left-hand side in the
special case, ∆ = 1 (see (2)), while the right hand sides differ. Note also that the
right-hand side in the special case ∆ = 1/2 coincides with the right-hand side studied
earlier, see (9).

6.1. The collusive force - the young may not bite. In the case of consumers
who are maximally patient, β = 1, inequality (21) boils down to

1

n
R(p∗) ≥ ¡1− e−r∆¢ p [D(p)−D(p∗)] , (23)

c.f. inequality (10). Note that a deviating firm only sells to old consumers because
every young or intermediate consumer, regardless of valuation, prefers to wait for the
zero price in the next period. In comparing with the case ∆ = 1, as well as with the
text-book model, we note that the right-hand side of (23) is less than the right-hand
side in (2), at any price p, while the left-hand sides are identical. Moreover, the
right-hand side of (23) is an increasing function of ∆. Hence,

Proposition 4. Suppose consumers have perfect foresight and are maximally pa-
tient. Any price that can be sustained in subgame perfect equilibrium in the case
∆ = 1 can also be sustained in subgame perfect equilibrium when ∆ ≤ 1/2. More
generally, any price that can be sustained in subgame perfect equilibrium for some
∆ ≤ 1/2 can be sustained for all ∆0 < ∆. Moreover, any price that can be sustained
in subgame perfect equilibrium in the text-book model for some ∆ ≤ 1/2 can also be
sustained in subgame perfect equilibrium in the present model for the same ∆.

6.2. The competitive force - the old always bite. Again to make the point
most stark, consider the case where consumers are maximally impatient, β = 0. In
this case, inequality (21) becomes

1

n
R(p∗) ≥ ¡1− e−r∆¢ pµD(p) + 1−∆

∆
[D(p)−D(p∗)]

¶
, (24)
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c.f. (11). In comparing with the cases ∆ = 1 and ∆ = 1/2, we note that while
the first term, in round brackets, is smaller the shorter the market period is, we have
the reversed ordering of the last factor above for all p < p∗ and all ∆ < 1/2: the
third term, in round brackets, is larger the shorter the market period is. Hence, the
right-hand side in (24) might, a priori, be larger or smaller than the corresponding
right-hand sides in the cases∆ = 1 and∆ = 1/2 (see (2) and (11)), while the left-hand
sides are identical in all three cases. Hence, it is not clear if the competitive force in
general becomes stronger or weaker as the length ∆ of the market period decreases.
However, comparing with the text-book model, see (5), we see immediately that
collusion is never easier in the present model. Indeed, if D is strictly decreasing,
then collusion is harder in our model.

Proposition 5. Suppose that consumers have perfect foresight and are maximally
impatient. Then any price that can be sustained in subgame perfect equilibrium in
the present model for some ∆ ≤ 1/2 can be sustained in the text-book model for the
same ∆.

6.3. Comparing with the text-book model when consumers have inter-
mediate patience. Let ∆ = 1/m for any integer m > 1, and suppose β ∈ (0, 1)
Then a price p∗ can be sustained in subgame perfect equilibrium in the text-book
model if and only if condition (5) holds for all p < p∗. By contrast, in the present
model, the corresponding incentive constraint is (21) for all p < p∗. Hence, if R
and H are continuous, collusion is easier in the present model than in the text-book
model if and only if the following inequality holds:

max
p∈[0,p∗]

H (p, p∗) < max
p∈[0,p∗]

R(p) . (25)

We illustrate this inequality when demand is linear.

7. Example

Suppose valuations are uniformly distributed on the unit interval. Hence, F (p) =
p for all p ∈ [0, 1], D(p) = max {0, 1− p}, R(p) = max {0, p(1− p)}, and the
monopoly price is p̂ = 1/2. We consider collusive prices p∗ ≤ p̂. Let the discount
factor between successive market periods be δ = e−r∆ for the firms and β ∈ (0, 1) for
the consumers (where β may depend on the period length, see below), and suppose
∆ = 1/m for some integer m > 1.

7.1. When the market period is half a consumer’s life span. In the present
example, the equilibrium condition (9) for the case ∆ = 1/2 becomes
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1

n
R(p∗) ≥ ¡1− e−r/2¢ max

p∈[0,p∗]
p

·
p∗ − p+max

½
0, 1− p

1− β

¾¸
(26)

Before analyzing this, let us illustrate in a diagram the deviation profit from the
young and old, respectively, as a function of the under-cutting price p, and com-
pare with the corresponding profit components in the text-book model. For these
illustrations, we consider a duopoly colluding at the monopoly price: n = 2 and
p∗ = p̂ = 1/2.
At that collusive price, the profit from the young is R(p̂)/4 = 1/16 = 0.0625, while

the profit from the young to an under-cutting firm is pmax {0, 1− p/ (1− β)} /2, see
Figure 1 below. Note that the highest profit curve, corresponding to β = 0, coincides
with the deviation profit curve in the text-book model.
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Figure 1: Deviation profit from the young, for β = 0, 0.3, 0.5, 0.7 and 0.9 (higher
curves correspond to lower β).

Likewise, at the collusive price p̂, the profit from the old is zero, while the profit
from the old to an under-cutting firm in our model is p (1/2− p) /2, a parabola with
maximum at p = 1/4 (this profit component being zero in the text-book model).
Total profits to an under-cutting firm in our model thus is the sum of these two
components - a continuous function for prices p < 1/2, with a kink at the price
p = 1− β.
We study two extreme cases before tackling the general case.

Maximally patient consumers. When consumers are maximally patient, that
is, β = 1, then the optimal under-cutting price is half the collusive price, and thus
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condition (26) then boils down to

1− p∗
n
≥ ¡1− e−r/2¢ p∗

4
. (27)

Since the candidate collusive prices are p∗ ∈ [0, 1/2], it immediately follows that
for n ≤ 4, all prices below the monopoly price are sustainable in subgame perfect
equilibrium, for all discount factors r > 0. This is in contrast to the case ∆ = 1
in which all prices below the monopoly price are sustainable in subgame perfect
equilibrium only under condition (3).
With more than four firms, the incentive condition (10) yields the following con-

clusion: there is, for every collusive price p∗, a critical discount rate r̄ (p∗) such that
p∗ is sustainable in subgame perfect equilibrium iff r ≤ r̄ (p∗) (we presume here as
elsewhere trigger strategies). It is straightforward to show that r̄ (p∗) decreases from
infinity at p∗ = 4/ (4 + n) to 2 ln [n/ (n− 4)] at p∗ = 1/2.
Maximally impatient consumers. When consumers are maximally impa-

tient, β = 0, then the optimal deviation price is the solution of

max
p∈(0,p∗)

p[p∗ − p+max {0, 1− p}], (28)

that is, p = (1 + p∗) /4 (see (26) and recall that p∗ ≤ 1/2). This implies that p∗ is
sustainable in subgame perfect equilibrium iff

8

n
p∗ [1− p∗] ≥ ¡1− e−r/2¢ (1 + p∗)2. (29)

Rearranging terms we get

r ≤ 2 ln
Ã

n (1 + p∗)2

n (1 + p∗)2 − 8p∗ (1− p∗)

!
(30)

It is straightforward to see that the incentive condition cannot be satisfied when
p∗ is close to zero: the right-hand side in (30) goes to zero for all n > 1 as p∗ → 0.
At such low collusive prices, the competitive force is thus strong and collusion is
not sustainable, even though it is sustainable in the case ∆ = 1. It is also easy to
see, however, that the monopoly price is sustainable in subgame perfect equilibrium:
when p∗ = 1/2, then inequality (30) becomes r ≤ 2 ln [n/ (n− 8/9)] Hence, collusion
is less easy than in the text-book model, c.f. equation (6) for ∆ = 1/2.
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Intermediate Consumer Patience. Suppose consumer patience is in between
the two above extremes. For any β ∈ (0, 1), the under-cutting price that maximizes
the deviating firm’s profit is

p̂ =
1 + p∗

2

1− β

2− β
. (31)

(see (26)), so condition (26) becomes

1

n
p∗ [1− p∗] ≥ ¡1− e−r/2¢ 1− β

2− β

µ
1 + p∗

2

¶2
. (32)

In the special case when consumers have the same time preferences as the firms,
β = δ, and when the collusive price is the monopoly price, p∗ = 1/2, this condition
boils down to

n ≤ 4
9
(2− δ) (1− δ)−2 . (33)

The graph of the function on the right hand side is illustrated in Figure 2 below,
along with the graph for the corresponding function in the text-book model (dotted
curve). We see that collusion is easier in the present model than in the text-book
model, for any number n ≥ 2 of firms in the market.
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Figure 2: The largest number of firms, n, for which collusive monopoly pricing is
possible, as a function of their discount factor β = δ in the present model (solid)

and in the text-book model (dotted).
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7.2. When the market period is shorter. We finally study all cases when
∆ = 1/m for any integer m ≥ 2, but only in the special case when the collusive price
is the monopoly price, p∗ = p̂ = 1/2. Then the equilibrium condition (21) becomes

1

4n (1− δ)
≥ max

p∈[0,1/2]
H (p, p̂) (34)

where δ = e−r/m is the firms’ discount factor, and

H (p, p̂) =


p
³
m+1
2
− m−β

1−β p
´

for p < 1−β
2

p
³
3
2
− 2−β

1−βp
´

for 1−β
2
≤ p ≤ 1− β

p
¡
1
2
− p¢ for 1− β < p < 1

2

. (35)

In comparison with the general formula (22), this new formula distinguishes three,
rather than two, price intervals. The reason is simply that the static demand function
D in the present example vanishes at the price p = 1 − β. Hence, at prices above
that level, one of the terms in the right-hand side of (22) vanishes.
Figure 3 shows the graph of H (p, p∗) as a function of 0 < p < p∗ = 1/2, when

β = 0.9, for m = 10 (solid curve) and m = 30 (dotted curve). The dashed curve is
the corresponding graph in the text-book model, see (25). The diagram shows that
the optimal deviation (for these parameter values) is not marginal under-cutting, as
in the text-book model, but a significant price cut.
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Figure 3: The deviation profit when β = 0.9, for m = 10 (solid) and m = 30
(dotted).

Suppose consumers have the same time preference as the firms, β = e−r/m. Then
it is not difficult to show that, when ∆ is small (m is large), then the deviation profit
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is maximized at some price in the lowest of the three price intervals in (35). Moreover,
the maximum deviation profit then is

V (r,∆) = max
p∈[0,1/2]

H (p, p̂) =
1

16

(1 +∆)2
¡
1− e−r∆¢

∆ (1−∆e−r∆)

Hence, by (25), collusion at the monopoly price is easier to sustain than in the text-
book model if and only if V (r,∆) < 1/4. Moreover, for any discount rate r > 0,
V (r,∆) → r/16 as ∆ → 0. Thus, when the market period is very short, then
collusion is easier to sustain in the present model than in the text-book model if and
only if the common discount rate r for consumers and firms alike, is less than 4.
(Recall that r is the discount rate per time unit, where a time unit is the life-span of
a consumer.)

8. Conclusion

Our model of dynamic Bertrand competition was developed in the simplest possible
setting. In particular, we focused exclusively on the use of the “grim” trigger strategy
as punishment. The reader might wonder to what extent our results are predicated
on this restriction. We believe they are not. Consider, for example, the use of
a forgiving trigger strategy with a finite punishment horizon. Firstly, just as in
the text-book Bertrand model, a shorter price war as a punishment makes collusion
less sustainable also in the present model. Secondly, the two forces, collusive and
competitive, will again drive the results. It is easy to see that all our qualitative
results are robust to this change of punishment strategies. Just as in the text-book
Bertrand model, a shorter price war as punishment makes collusion less sustainable
also in the present model. An investigation of the robustness of the present results
with respect to punishment strategies more generally would be valuable.
Another simplification is that we have focused on the case of an indivisible durable

good. It seems likely that the qualitative results carry over also to the case of divisible
and non-durable goods - another task for future research.
A third avenue for further research is to investigate the effects of consumers’

intertemporal substitution possibilities on the sustainability of collusion in dynamic
Cournot oligopoly.
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