
DEFINABLE AND CONTRACTIBLE CONTRACTS

MICHAEL PETERS AND BALZS SZENTES

Abstract. This paper analyzes a normal form game in which players write contracts that

condition their actions on the contracts of the other players. These contracts are required to

be representable in a formal language. This is accomplished by constructing contracts which

are definable functions of the Godel code of every other player’s contract. We characterize the

set of outcomes that are supportable as (pure strategy) equilibrium with such contracts. With

symmetric information, this is all outcomes in which all players receive at least their min max

payoff. With incomplete information this all allocation rules that are incentive compatible and

satisfy an individual rationality condition that we describe. We contrast the set of allocation

rules that can be supported by Bayesian equilibrium with those attainable by a mechanism

designer.

1. Self Referential Strategies and Reciprocity in Static Games

In this paper we characterize the allocation rules attainable by players in a game when they

have the ability to commit themselves by writing contracts that condition their commitments on

other players’ contracts.

The idea that contracts might condition on other contracts is not new in economics. The best

known expression of this idea is well known in the industrial organization literature (e.g. [11]) as

the ’meet the competition’ clause in which one firm commits itself to lower its price when any of its

competitors does. A similar idea appears in trade theory as the principle of reciprocity ([2]). This

takes the form of trade agreements like GATT that require countries to match tariff cuts by other

countries. Finally, tax treaties sometimes have this flavor - for example, out of state residents who

work in Pennsylvania are exempt from Pennsylvania tax as long as they live in a state that has a

’reciprocal’ agreement that exempts out of state residents (presumably from Pennsylvania) from

state taxes.1

All of these approaches are used to support cooperative outcomes in static games. None of them

can be used in any but the simplest problems. The meet the competition argument is extremely

stylized. The Stackleberg leader, call it firm A, offers to sell at a very high price provided its

competitor, firm B, also offers that high price in the second round. If B in the second round offers

any price below the highest price, A commits itself to sell at marginal cost. If B believes this

commitment, then one best reply is to set the highest price.

Very Preliminary Version - do not cite - November 6, 2008.
1http://www.revenue.state.pa.us/revenue/cwp/view.asp?A=238&Q=244681

1

2 MICHAEL PETERS AND BALZS SZENTES

If the firms move simultaneously, then the logic of the argument becomes clouded. A could

certainly write a contract that commits it to a high price if B sets the same high price. However

suppose that B’s strategy is simply to set this high price and that for some reason this is a best reply

to A’s contract. Then A should deviate and simply undercut firm B. To support the high price

outcome, firm B would have to offer a contract similar to A’s in order to prevent A’s deviation. A

naive argument would suggest that B should simply offer the same contract as A, a high price if A

sets a high price, and marginal cost otherwise. Casually, two outcomes seem consistent with these

contracts - both firms price at marginal cost or both firms set the high price. This seems to violate

a fairly fundamental property of game theory which is that for each pair of actions (contracts

in this case), there is a unique payoff to every player.2 More to the point, A’s contract doesn’t

actually say what A would do if B offers a contract that promises to set a high price unless A sets

a lower price, etc. The specification of the problem itself seems to be ambiguous about payoffs.

Generally contracts that react to actions of other players simply don’t make sense. They may

not lead to unambiguous outcomes as in the example above. More generally, it is possible that

such contracts are simply contradictory. For example, two firms might write contract that commit

both of them to set a price that is strictly lower than the other firms price (or two economists

demand contracts that guarantee that they will both earn more money than anyone else in the

department). To resolve ambiguities and contradictions in such contract, an outside mediator is

needed to choose an outcome, and this is exactly what we are trying to avoid.

The reciprocal tax agreement problem is better behaved, and provides the basis for the argument

we extend below. State A wants to exempt residents of state B from state taxes provided B exempts

residents of state A from taxes. To write the law A exempts residents from any state that has a

’reciprocal’ agreement with state A. The question is what exactly is a ’reciprocal’ agreement. It

is clear enough what the intention is - create a situation in which both states take the mutually

beneficial action of exempting one another in a way that eliminates any incentive for either of them

to deviate. As mentioned above, it isn’t enough to assume that state B unconditionally exempts

residents of state A from tax because A would not longer have any incentive to exempt state B.

State B has to have a law like the law in state A, in other words, a reciprocal agreement.

It seems that to resolve this kind of problem one needs to define the term ’reciprocal contract’

as follows:

reciprocal contract ≡

exempt if the other state offers a reciprocal contract,

don’t otherwise

This kind of definition is familiar from the Bellman equation in dynamic programming where the

value function is defined in a self referential way. It is tempting to model this in the following naive

way: start by defining a collection of contracts that seem economically sensible. For example, it is

2One paper that allows multiple payoffs to be associated with each array of actions is [12] who use this approach

to support equilibrium when it might not otherwise exist.

DEFINABLE AND CONTRACTIBLE CONTRACTS 3

reasonable that a state could write a contract that simply fixes any tax rate independent of what

the other states do. Let C be the set of contracts that simply fix some unconditional tax rate.

Append to this set of feasible contracts the reciprocal contract, call it r, defined above. Now model

the set of feasible contracts as C ∪ {r}. The reciprocal contract above is just r, while ’otherwise’

means any contract with a fixed tax rate. Define a normal form game in which the strategies are

C ∪ {r} and declare the outcome if both states offer r to be (exempt, exempt). Then there is an

equilibrium in which the states mutually exempt (assuming they jointly want to).

We would argue that this is unsatisfactory for a number of reasons. First, it is undesirable to

restrict the set of feasible contracts in order to support the outcome you are looking for. The

approach described above amount to little more than saying that r is the only feasible contract,

then claiming it is an equilibrium for both states to offer r. A more satisfactory approach is

to define a set of actions that seem economically meaningful, then to allow the broadest set of

contracts possible. In the same manner that the value function emerges endogenously from the

economic environment, the reciprocal contract should be derived from economic fundamentals.

Second, the approach described above misses the essence of reciprocity which is the infinite

regress involved in self referential objects. A contract that makes formal sense is the following:

C =

exempt if other State exempts any State who exempts any State who exempts. . .

don’t otherwise

where the statement in the top line is repeated ad infinitum. Arguably, the contract C is a

reciprocal contract since it would exempt any State offering a reciprocal contract. Yet it simply

isn’t feasible under the naive description given above.

Of course, in the spirit of the ad hoc approach above, we could try to add the contract C to r

and C. This approach breaks down once the game becomes asymmetric. For example, if State A

is supposed to exempt, while state B is supposed to take some other action, say ’partly exempt’,

then to support the right outcome, the contracts should look something like the following:

reciprocal contractA ≡

exempt if other State offers reciprocal contractB

don’t exempt otherwise

and

reciprocal contractB ≡

partially exempt if other State offers reciprocal contractA

don’t exempt otherwise

Now the contracts are not directly self referential, as is the Bellman equation, instead they are cross

referential. A single self referential or reciprocal contract simply doesn’t go far enough. Further-

more, the contracts above define only a single cooperative actions, and use a blanket punishment

for deviations. Desirable or interesting equilibrium allocations may not look like this. For example,

in a general Bayesian game, the most desirable cooperative action for both players might depend

on information that only one of them has. So the action that State A wants to take might depend

4 MICHAEL PETERS AND BALZS SZENTES

on the contract that B offers. Alternatively, the most effective punishment for A to impose on B

might depend on actions that other states are taking. As the number of possibilities increases,

so does the number of special word we need to add to our contracting language to support the

outcomes we want.

Our approach avoids these problems. We fix a language, then show this language already

contains all the special terms like ’reciprocal contract’ that we need, even in very rich economic

environments where simple notions like ’cooperation’ do not adequately describe the allocations

we are interested in. The contracting language that we describe is universal in this sense.

It is universal in a second way. Allowing contracts to specify actions that depend on other

contracts means that actions might depend on whether other players’ contracts depend on the

way you make your action depend on their contracts, the way you make your action depend

on how their contracts depend on the way you make your contract depend on their contracts,

and so on. In simple prisoner’s dilemma problems like the tax problem discussed above, this

problem is relatively straightforward since ’dependence’ simply means whether or not the other

player cooperates. However, in richer environments, ’dependence’ is more subtle since there are

many different ways that players can condition their actions at each round in the hierarchy of

dependencies described above. The method we describe below provides a compact way of dealing

with this.

Finally, the Bellman equation style representation of a reciprocal contract illustrates that the

notion of reciprocity depends on the contracting environment because the word cooperate appears

in the definition of a reciprocal contract. The set of contracts that we use is independent of the

underlying game that is being played. Contracts need to map into feasible actions, but the way

that these actions depend on other contracts doesn’t depend on what these actions are. Nor does

it depend on whether or not players have private information. In this sense, our contracts are

universal in the sense that they can be used to describe equilibrium in all strategic situations.

1.0.1. How Definability Works. Return again to the main purpose of definability. Instead of cre-

ating special terms like “reciprocal contract” in an ad hoc way to support cooperative outcomes

in special situations, we want to provide a contracting environment in which we can show that the

special terms we need to write the contracts that players need to enforce their collusive agreement

will always exist within the language. We do it here to illustrate the method for the very simple

case, then generalize the approach in the sections below.

Suppose there are N players in a normal form game in which each player has a countable

number of actions. Endow players with a formal language containing a countable number of

words or characters that they can use to write contracts. Feasible contracts are finite sequences of

characters in this formal language. As we mentioned above, the set finite subsets of a countable

set is countable, so there are bijections mapping each finite text into N. One such a mapping is

called the Godel Coding. Provided the language includes all the natural numbers and the usual

arithmetic operations, it is possible for players to write contracts that are definable functions from

DEFINABLE AND CONTRACTIBLE CONTRACTS 5

NN−1 into that player’s action space. Since definable functions can be written as finite sequences of

characters in the language, they have Godel codes associated with them. Hence we could interpret

the definable functions as contracts that make the players action depend on the Godel code of the

other player’s contract.

To make the argument easier to relate to conventional contract theory, we assume below that

the contract space for each player is the set of definable functions from NN−1 into the subsets

of the player’s action spaces. Every definable function can be associated with a unique integer,

and conversely if the integer n is associated with a definable function, then it is associated with

a unique text. Now for each array of functions chosen by the players, compute the Godel Code

of each such function. Fit the codes of the other players’ strategies into each player’s strategy to

determine a unique subset of actions for every player. Then, players simultaneously take actions

from these subsets.

Our objective is to try to characterize the set of equilibria of this game. To see how it works, we

might as well restrict attention to a two player prisoner’s dilemma. Call the players 1 and 2, and

the actions C and D with the usual payoff structure in which D is a dominant strategy and both

players are strictly better off if they both play C than they are if they both play D. A strategy c

for a player is a definable function from N to {C, D}. One obvious equilibrium of this game occurs

when both players use a strategy that chooses action D no matter what the Godel code of the

other player’s strategy.

Every definable function has a Godel code. Let [c] denote the Godel code of the strategy c and

refer to [c] as the ’encoding’ of c. Since the Godel coding is an injection from the set of definable

strategies to the set of integers. For any pair of strategies c1 and c2, the action (C or D) taken by

player 1 is c1 ([c2]) and similarly for player 2. Since every pair of actions determines a payoff, this

procedure associates a unique payoff with every pair of strategies.

There are many things that aren’t definable strategies that also have Godel codes. We want to

make use of some of these other things. In particular, we want to use definable strategies with free

variables. For example, there is a subclass of definable strategies for player 1 defined parametrically

by

γx (n) =

C n = x,

D otherwise.

This is simply a definable strategy with a free variable x, where x is the target code of the other

player’s strategy that will trigger the cooperative action. Definable strategies with free variables

are also definable, and so they too have Godel codes. The strategy with free variable that we want

is a slight modification of the one above, in particular

(1.1) cx (n) =

C n =
[
〈x〉

(x)
]
,

D otherwise.

6 MICHAEL PETERS AND BALZS SZENTES

The mapping < x >(x)is the composition of two functions. First, the function 〈x〉 is the inverse

operation to the Godel coding. That is, < n > is the text whose Godel code is n. Second, if φ is

a text with one free variable, then φ(n) is the same text where the value of the free variable is set

to be n. Hence, if n is a Godel code of a definable strategy with one free variable, then < n >(n)

is itself a definable strategy (without a free variable).
[
〈n〉(n)

]
is just the Godel code of whatever

this definable strategy happens to be. Notice that in this case, [〈x〉 (x)] won’t be equal to x since a

definable strategy must have a different Godel code from a definable strategy with one free variable

because of the fact that the Godel coding is injective.

We want to define a strategy by fixing a value for x in (1.1). In particular, the value of x we

are interested in is [cx]. Since [cx] is the Godel code of a strategy with a free variable, the right

hand side of (1.1) requires that we decode [cx] to get cx, then fix x at [cx] to get the contract c[cx].

Putting all this together gives

c[cx] (n) =

C n =
[
c[cx]

]

D otherwise

So

c[cx] ([c2]) =

C [c2] =
[
c[cx]

]

D otherwise

is a the ’reciprocal’ or self-referential contract mentioned above. Now we simply need to verify

what happens when both players use strategy c[cx].

If player 2 uses strategy c[cx], then [c2] =
[
c[cx]

]
, which evidently triggers the cooperative action

by player 1. The same argument applies for player 2. Player 2 can deviate to any alternative

definable strategy c′ that she likes. Since every definable strategy has a Godel code, the reaction of

player 1, and consequently both players payoffs are well defined. As the Godel coding is injective,

c′ 6= c[cx] implies the Godel code of c′ is not equal to
[
c[cx]

]
, and the deviation by 2 induces 1 to

respond by switching from C to D.

Notice that this argument makes use of an encoding of the strategy with free variable cx, which

isn’t a definable strategy. One might have expected the target code number to be associated

with a strategy instead of a strategy with a free variable. For example, it seems that to enforce

cooperation there needs to be a definable strategy c∗ with encoding [c∗] = n∗ such that

c∗ =

C [c2] = n∗

D otherwise

Of course, for arbitrary n∗ it will be false that [cn∗] = n∗. This leads to a fixed point problem

that, in fact, does not have a solution in general. More generally, one could try to construct a

self-referential contract by finding a fixed point of the the following problem. For each n, consider

cn ([c2]) =

C if [c2] = g (n) ,

D otherwise,

DEFINABLE AND CONTRACTIBLE CONTRACTS 7

where g is a definable function. If there exists an n∗ such that [cn∗] = g (n∗), then cn∗ is obviously

a self-referential contract. Indeed, what we did above is that we chose g (n) to be [< n >(n)] and

showed that n∗ = [cx] is a corresponding fixed point.

To see how the strategy with free variable cx works, recall the reciprocal tax agreement

reciprocal contract ≡

exempt other State offers reciprocal contract

don’t exempt otherwise

and its recursive counterpart

C =

exempt if other State exempts any State who exempts any State who exempts. . .

don’t otherwise

The ’reciprocal contract’ is c[cx] and the statement “other state offers reciprocal contract” is [c2] =[
c[cx]

]
.

State A wants to exempt any state whose law fulfills a condition. For example, if the condition

it is looking for is that the other state simply exempts State S, then it would compute the Godel

code n0 = [∀n; c (n) = C] then use the strategy

cn0
=

C [c2] = n0

D otherwise

If it does that, then it can’t be an equilibrium as explained above. So what it needs to do is

to exempt any State whose law fulfills a condition that exempts any state whose law fulfills a

condition. For example, if it wanted to exempt State B if and only if State B’s law exempts state

A if and only if State A unconditionally exempts state B, then it would adopt the strategy c[cn0]
,

and so on.

This is where the particular structure of the contract cx comes into play. Recall that

cx (n) =

C n =
[
〈x〉

(x)
]
,

D otherwise.

It specifies exemption if and only if a condition is fulfilled, but it doesn’t seem to specify what the

condition is. However, it does require that whatever the condition x is, if x in turn depends on

a condition, then the condition that it depends on must be the same as the condition itself. To

see if x depends on a condition, we first decode it and find the statement 〈x〉 that the integer x

corresponds to. Then if it depends on some condition, we require that that condition be x itself,

which is the meaning of 〈x〉(x). So now we can do the infinite regress. State A adopts a law that

exempts state B if and only if the Godel code of State B’s law is
[
c[cx]

]
. This means that state

B’s law must be c[cx], or that B exempt A if and only if the Godel code of State A’s law is
[
c[cx]

]
,

i.e., the same condition that A requires.

8 MICHAEL PETERS AND BALZS SZENTES

2. Literature

The approach of allowing contracts to depend on other contracts is closely related to ideas in

the computer science literature. One paper that uses this approach is [13]. He has players writing

programs that determine their actions. Using an idea due to von Neumann, he allows these

programs to use other programs as data, which has the effect of making the output of each player’s

program depend on the other players’ programs. The result extends the “reciprocal contract” idea

presented above to a more general n player game. We have illustrated the basic principle with our

’cross-referential’ example above. To support any array of actions, Tennenholz effectively writes

out explicitly the a sequence of programming statements of the form

MY PROGRAMi ≡

actioni syntax of the other players’ programs are MY PROGRAMj

minmax j otherwise

For the array of actions to be enforced, the other players programs must all contain the key words

MY PROGRAMj , and must interpret the term as described here.

On the most basic level, our paper differs since we are interested in problems with incomplete

information. In this sense we go far beyond the environment studied by Tennenholtz. At the

contracting level, we reverse the reasoning in Tennenholtz. Instead of defining an allocation,

then providing a set of contracts that can be used to support the equilibrium outcome, we start by

defining a language and feasible set of contracts. From this well defined contracting game, we prove

that the language will contain the keywords we need to support outcomes. Thus we prove that

the set of feasible contracts we provide must contain contracts that support allocations. However,

our basic approach is the same in the sense that instead of comparing the ’syntax’ of computer

programs, we compare the Godel codes of definable statements.

An approach that encompasses both our approach and Tennenholz is given in [7]. They begin

with an arbitrary class of commitment devices which are required by construction to have the

property that each array of commitment devices maps into a unique outcome. In this sense, our

contracts, and Tennenholz’ programs are special cases. They then show that for an arbitrary finite

two person game, they can construct a set of commitment devices that support payoffs above

minmax as a Nash equilibrium.

Apart from incorporating incomplete information, our objective is to start by defining a natural

set of commitment devices, then to show that we can always find the devices within our class that

we need to support whatever outcome is of interest. Of course, the term ’natural’ means different

things to different people. The notion of contracting on contracts is familiar enough to economists

that our class of contracts seems realistic.

We emphasize that the contribution here is not intended to be a contribution to the computer

science literature. In fact, we take the traditional view that players have access to a legal system

which can be used to provide redress when contracts are not carried out. Yet redress is all we

want. Our purpose is to define a contracting language such that players can write any contract

DEFINABLE AND CONTRACTIBLE CONTRACTS 9

that they like in this language. Once all the players have written their contracts, they should be

able to deduce on their own what actions they need to take in order to fulfill their contracts. Using

the usual assumption that these contracts are enforceable, then the legal system won’t actually

play a role, since no player would ever violate a contract. This is quite different from the usual

mechanism design approach in which a mechanism designer plays an active role in coordinating an

outcome.

Finally, we use the Godel coding. Any bijection from finite texts to integers would do. The

Godel code has the advantage that it is a definable function. So it can be explicitly written into

the contracts we allow, so that a judge (or player for that matter) who doesn’t know what it is

can explicitly calculate it.

3. The Language and the Gdel Coding

We consider a formal language, which is sufficiently rich to allow its user to state propositions

in arithmetic. Furthermore, the set of statements in this language is closed under the finite appli-

cations of the Boolean operations: q, ∨, and ∧. This implies that one can express, for example,

the following statement:

∀n, x, y, z {[(n ≥ 3) ∨ (x 6= 0) ∨ (y 6= 0) ∨ (z 6= 0)] → (xn + yn 6= zn)]} .

In addition, one can also express statements in the language that involve any finite number of free

variables. For example, “x is a prime number” is a statement in the language. The symbol x is

a free variable in the statement. Another example for a predicate that has one free variable is

“x < 4.” One can substitute any integer into x and then the predicate is either true or false. This

particular one is true if x = 0, 1, 2, 3 and false otherwise.

Let L be the set of all formulas of the formal language. Each of its element is a finite string

of symbols. It is well known that one can construct a one-to-one function L → N. Let [ϕ] be the

value of this function at ϕ ∈ L, and call it the Gdel Code of the text ϕ.

In what follows, we define a class of functions which can be represented represented by finitely

many characters in our formal language.

Definition 3.1. The function f : Nk → 2N is said to be definable if there exists a first-order

predicate φ in k + 1 free variables such that b ∈ f (a1, ..., ak) if and only if φ (a1, ..., ak, b) is true.

In the definition, the mapping f is a correspondence from Nk to N. Of course, if f (n) is a

singleton for all n ∈ Nk, then f is a function. If the function f is definable by the predicate φ then

we refer to [φ] as the Godel encoding of f . We illustrate the previous definition with an example.

Example. Consider the following function defined on N:

f (a) =

{
0 if a is an even number,

1 if a is an odd number.

10 MICHAEL PETERS AND BALZS SZENTES

We show that this function is definable by constructing the corresponding predicate φ.

φ (x, y) ≡ {{y = 1} ∧ {y = 0}} ∨ {∃z : 2z = y + x} .

Notice that φ indeed has two free variables. (The variable z is not free because there is a quantifier

front of it.) The first part of φ states that y is either one or zero. The second part says that x + y

is divisible by two. Notice that f (a) = 0 if and only if φ (a, 0) is true. To see this, first notice

that φ (a, b) is false whenever b /∈ {0, 1}. (This is because the first part of φ requires b to be zero

or one.) If b = 0 then φ (a, 0) is indeed true. If b = 1, then the second part of φ becomes false

because a + b is an odd number.

4. A Normal Form Contracting Game

Suppose there are m players. Player i has a finite action space Ai. Let A denote ×m
i=1Ai. The

payoff of Player i is ui (a1, . . . , am). We use the conventional notation that ui (ai, a−i) is the payoff

to player i if he takes action ai while the other players take action a−i. Each player simultaneously

submits a contract, which is a definable correspondence from Nm to 2N, where ‘definable’ is to be

understood in the sense of Definition 3.1. At stage two, players take actions simultaneously from

subsets of their actions spaces. These subsets are determined by the first-stage contracts. If at

stage one player j submitted contract cj (j = 1, ..., m), then player i can only take action ai
k at

stage two if k ∈ ci ([c1] , ..., [cm]). We restrict attention to pure-strategy subgame perfect equilibria

of this game.

The lowest payoff for any player in any pure strategy equilibrium of the ’default’ game in which

players simply choose actions from A is

u∗
i = min

a−i∈A−i

max
ai∈Ai

ui (ai, a−i) ,

Let a∗
j be any one of the actions that j uses to attain his minmax payoff. Let us fix an action ai

ji

for player i, such that,
(
a1

j1
, ..., am

jm

)
∈ arg min

a−i

uj (aj , a−j) .

That is, ai
ji

is the action that player i uses to punish player j. For convenience, define ii = 1 for

all i ∈ {1, ..., m}.

Theorem 4.1. The action profile
(
a1

k1
, ..., am

km

)
∈ A is supportable as an equilibrium outcome in

the contracting game with pure strategy SPNE if and only if ui (a) ≥ u∗
i for each i.

Before we proceed with the proof of the theorem, we recall two pieces notations from the

introduction. First, if n ∈ N then < n > denotes the text whose Gdel code is n. That is,

[< n >] = n. Second, for any text ϕ, let ϕ(n1,...,nk) denote the statement where if the letter xi

stands for a free variable in ϕ then xi is evaluated at ni in ϕ for i = 1, ..., n. For example, if ϕ

is x1 > x2, n1 = 2, and n2 = 1 then ϕ(n1,n2) is 2 > 1. Consider now the following text in k free

variable: < xi >(x1,...,xk), where i ≤ k. One can evaluate this statement at any k dimensional

DEFINABLE AND CONTRACTIBLE CONTRACTS 11

vector of integers. Since the Godel coding was a bijection < ni > is a text for each ni ∈ N. In

addition, ϕ(n1,...,nk) is defined for all ϕ and (n1, ..., nk). In addition, it is a well-known result in

Mathematical Logic, that if f (n1, ..., nk) =
[
< ni >(n1,...,nk)

]
, then f is a definable function.

Proof. First, we prove the only if part. Fix an equilibrium in the contracting game. Let cj denote

the equilibrium contract of player j (j = 1, ..., m) and let ui denote player i’s equilibrium payoff.

Notice, that player i can always offer a contract that does not restrict his action space. That is,

he can offer c : Nm → N, such that c (n1, ..., nm) = N for all (n1, ..., nm) ∈ Nm. The contract c is

obviously definable. 3 We show that if ui < u∗
i , player i can profitably deviate at the first stage by

offering c instead of ci. Let c̃j = cj if j 6= i and c̃i = c. Let Ãj =
{

aj
k : k ∈ c̃j ([c̃1] , ..., [c̃m])

}
. That

is, Ãj is the action space of player j in the subgame generated by the contract profile (c̃1, ..., c̃m).

Also notice that Ãi = Ai. The payoff of player i in any pure strategy equilibrium of this subgame

is weakly larger than

min
a−i∈ eA−i

max
ai∈Ai

ui (ai, a−i) ≥ min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) .

The weak inequality follows from Ãj ⊆ Aj for all j. Therefore, player i can always achieve his pure

minmax value by offering the contract c.

For the if part, consider the following contract of Player i, ci
xi,x−i

, in m free variables:

ci
x1,...,xm

(([
cj
])m

j=1

)
=

(4.1)

{
ki if |

{
k :
[
< xk >(x1,...,xm)

]
6=
[
ck
] }

| 6= 1,

ji if
{
k :
[
< xk >(x1,...,xn)

]
6= [ck]

}
= {j}

This contract with free variables is a definable function with free variables from Nm−1 to N as long

as the actions are replaced with their indices.

The expression (4.1) is not a contract, but rather a contract with free variables. Each such

expression has a Godel code, so let γi =
[
ci
x1,...,xm

]
. The functions

{
ci
γ
1
,...,γm

}
i

have no free

variables, so they constitute a set of contracts. We will now show that
{
ci
γ
1
,...,γm

}m

i=1
constitutes

an equilibrium profile of contracts which support the outcome
{
a1

k1
, . . . , am

km

}
. First observe what

happens when all players use contract ci
γ
1
,...,γm

. Notice that

ci
γ
1
,...,γm

(([
cj
])m

j=1

)
=

{
ki if |

{
k :
[
< γk >(γ

1
,...,γm)

]
6= [ck]

}
| 6= 1,

ji if
{
k :
[
< γk >(γ

1
,...,γm)

]
6= [ck]

}
= {j} .

Player i needs to check whether the Godel code of< γk >(γ
1
,...,γm) is equal to the Godel code of

ck
γ
1
,...,γm

. The integer γk is the Godel code of the contract with free variable ci
x1,...,xm

. Player

i’s contract says to take this contract with free variable, fix the free variables at γ1, ..., γm (which

3For example, the predicate

{x1 = x1} ∧ ... ∧ {xm = xm} ∧ {y = y}

defines c. That is, for all y ∈ N the predicate is true no matter how the free variables are evaluated.

12 MICHAEL PETERS AND BALZS SZENTES

gives the contract ck
γ
1
,...,γm

), then evaluate its Godel code. This is what is to be compared with

the Godel code of the contract offered by k. Of course, these are the same. Since this is the case

for all m− 1 of the other players, player i ends up taking action ai. So these contracts support the

outcome we want if everyone uses them.

Player j can deviate to any definable contract mapping N into N. However, any such contract

will have a different Godel code, and so will induce the punishment
{
ai

ji

}
i6=j

from the other players.

Recall that
{
ai

ji

}
i6=j

is the action profile that players other than player j use to minmax player j.

Since uj (a) ≥ u∗
j this deviation will be unprofitable.

One might argue that restricting the space of contracts to be definable functions of Godel codes

is both arbitrary and unnatural. Indeed, there is no reason for a judge to interpret a contract as

a description of a mapping from the Godel codes of the contracts offered by the other players to

the actions space of the player. For that matter, the judge might not even know about the Godel

coding. It is important to note that the salient feature of definable contracts is that they can be

written as texts that use a finite number of words in a formal language. The set of finite texts

seems a very natural description of the set of feasible contracts. In fact, from this perspective it

seems that any reasonable description of the set of feasible contracts should allow any such text.

The complication with such a broad description of the set of contracts is that to properly define

a game, one must fully describe the mappings from profiles of texts into payoffs. Many texts

will be complete nonsense and some modelling decision has to be taken about how these would

translate into actions and payoffs. The contracts that we specify above are definable texts that

have two advantages in this regard. First, since every finite text has a Godel code, they tie down

the action of the player who offers such a contract even if the other players in the game offer

contracts involving texts that make no economic sense. Furthermore, if all players offer contracts

from the set we specify, an outcome for every player is uniquely determined.

Finally, since the Godel coding itself is definable, the coding can be embedded directly into the

contract. So players don’t need to agree to use the Godel code of other contracts. They can use

the Godel code unilaterally, and the implications of the contract will be understood by the others

provide they agree on the underlying language in which contracts are written.

Generalizations.— Everything about this theorem involves pure strategies. This imposes limits

on its application. Next, we discuss how to extend our result to the case when players can mix

over their restricted action space at the second stage of the game but cannot randomize over the

contracts they offer at the first stage. Allowing such mixing expands the set of payoff profiles

that can be supported by equilibria for two reasons. First, since players can randomize certain

convex combinations of payoff profiles can now be supported. Second, players can use mixing when

punishing a deviator, and hence the minmax value of the players will be smaller.

Formally, for all S = ×iSi, Si ⊂ Ai, define a game, GS , where the action space of player i is Si,

and the payoff function of player i is the restriction of ui on S. Let E (S) denote the set of mixed

DEFINABLE AND CONTRACTIBLE CONTRACTS 13

equilibria in GS . Define the minmax value of player i, u∗
i , as

u∗
i = min

S−i⊂A−i

S−i=×j 6=iSj

max
Si⊂Ai

min
σ∈E(S−i×A)

∫
ui (a) dσ (a) .

The idea is that in the contracting game, players can restrict their action spaces arbitrarily, hence,

when they punish player i they can choose S−i arbitrarily. On the other hand, their second-stage

actions must be best responses, and that is why we have to consider equilibrium payoffs in the

restricted game. An argument identical to the proof of Theorem 1 shows that the random allocation

σ ∈ ∆(A) can be supported as an equilibrium if

(i) ∃Si ⊂ Ai for all i, such that σ ∈ E (×iSi), and

(ii)
∫

ui (a) dσ (a) ≥ u∗
i for all i.

What happens if players are allowed to randomize over the contracts they offer? It is possible

to show that part (i) can be completely relaxed. That is, the distribution over the outcomes does

not have to be an equilibrium in GS , and it does not even have to be generated by independent

randomizations of the action spaces of the players. The construction of mixed equilibria in our

contracting game that supports correlated outcomes is entirely based on Kalai et.al. (2008). The

authors consider a two-person game similar to ours. Instead of taking actions, players submit

commitment devices from a certain set. The devices then determine the action profile. The

authors construct a set of devices such that any individually rational correlated outcome can be

implemented as a mixed equilibrium in the game. (That is, although the players mix independently

over their devices, the distribution over the actions profiles will be correlated.) It is not hard to

extent their results to our model and obtain the following theorem.

Theorem 1. Suppose that σ ∈ ∆(A), and σ (a) ∈ Q for all a ∈ A. The σ can be supported as a

mixed-strategy equilibrium outcome in the contracting game if and only if
∫

ui (a) dσ (a) ≥ u∗
i for

all i ∈ {1, ..., m}.

Another question is why we use definable functions as opposed to programs or Turing machines.

One might want to require that the contracts must be computable and assume that the set of

available contracts is the set (or a subset) of Turing machines. In such a model, if player i

(i = 1, 2) chooses machine τ i, then τ i runs on the description of τ j , and the output will be a subset

of the action space of player i. It is well-known, that one can construct self- and cross-referential

contracts (machines) in this space too.4 In fact, this construction is essentially identical to our

construction of cross-referential definable functions. Most importantly, the equilibrium contracts

we construct to support individually rational allocations are, in fact, recursive functions, and hence

they are computable by Turing machines. Therefore, if the reader insists on computability, he can

restrict attention to the space of Turing machines.

4Such machines were constructed even in the context of Game Theory, see Anderlini 1990 and Canning 1992.

14 MICHAEL PETERS AND BALZS SZENTES

There are, however, several advantages of our approach over modelling contracts with Turing

machines. Let us explain.

1. Turing machines do not always halt. Therefore, it is not clear how one can define our

contracting game properly. In particular, it is not straightforward how to define the restriction

on the action space of a player, if his machine does not halt. One might suggest that if a player

submits a Turing machine that does not halt, then define his second stage action space to be the

whole space (or a default subset). We think that such a definition might be arbitrary. In addition,

the problem whether or not a Turing machine halts is an undecidable problem. That is, there is

no Turing machine which can determine whether a player deviated or not. An alternative way to

handle the halting problem is to restrict the space of Turing machines to be the set of machines

that always halts. We find such restrictions also arbitrary. Instead of restricting the space of

recursive functions, we expanded it to be the set of definable functions and avoided the halting

problem that way.

2. Another problem with Turing machines is that they can only condition on the actual descrip-

tion of the machines submitted by the other players but cannot condition on the functions what

the machines compute. Take the example of the prisoner dilemma. It is possible to construct a

Turing machine, τ , such that

τ ([τ2]) =

{
C if [τ2] = [τ]

D otherwise.

The problem is that if player 2 submits a machine, say τ ′, which is computationally equivalent

with τ , but has a different description, then player 1 would defect. In fact, it is not possible to

construct a machine which does not suffer from this problem. That is, the equilibrium contract is

sensitive to the way it is written. A player does not only require the other player to have the right

intentions, but also requires him to express himself in a unique way. This feature makes us doubt

whether machine contracts is the right way of modeling contractible contracts.

We avoid such problems with definable functions. Indeed, it is possible to express contracts that

do not condition on the actual way the other contract is written, but on the function itself that

the other contract describes. Consider

c1 ([c2]) =

{
C if c∗2 ⇔ c2,

D otherwise.

The contract cγ is obviously definable, but does not condition on the actual form of c2. As long

as c2 is represents the same function as c∗2, cooperation is prescribed.

DEFINABLE AND CONTRACTIBLE CONTRACTS 15

5. Contracting in a Bayesian Environment

This section shows how to extent the result of the previous section to games with incomplete

information. The model is the same as in the previous section, with the addition of player types.

There are n players. Player i’s actions space is a finite set denoted by Ai. Each player i has a

type ti drawn from a finite set T i. The joint distribution types is common knowledge. The payoff

of player i is ui (ai, a−i, t) where t ∈ T1 × · · · × Tm. Notice that a strategy rule for player i in the

Bayesian game the players might otherwise be involved in is an element of A
|Ti|
i .

The contracting game involves the same m players. A contract is a definable function from

the Godel codes of the contracts of the other players into Ãi = 2Ai , which is the set of subsets

of i’s set of actions. We want to characterize the set of allocations that can be supported as

Bayesian equilibrium in which players use pure strategies when selecting their contracts. This

characterization illustrates a surprising property of contract equilibrium - the actions that that a

player ultimately takes can depend on the types of other players. The reason for this is that in the

contract equilibrium, each players contract specifies commitments that vary with the contracts of

the other players. Since these contracts depend on their types, this allows a player to condition

his behavior to some degree on the types of the others. As in the symmetric information case,

contracts on contracts can then be used to support a kind of cooperative behavior.

Part of the argument below extends the reciprocal contracting idea to the Bayesian case. Each

of the player’s types has a reciprocal contract that takes a cooperative action if all the other players

offer reciprocal contracts appropriate for one of their types. If any player deviates, then the non-

deviators punish. This supports a lot of behavior in the contracting game that is unsupportable in

the simple Bayesian game without contracts. This argument by itself isn’t sufficient to provide a

complete characterization of equilibria in the contracting game because it leaves open the possibility

that contracts can be used to implement more sophisticated punishments that depend on the

actions the deviator wants to take.

One of the contributions of our theorem below is to show how to use the concept of a ’punishment’

to characterize contract equilibria. An off-equilibrium contract offer by player will trigger a response

from non-deviators because their contracts specify actions that depend on the contract that the

deviator offers. Generally, this response may be quite complex in the sense that it depends in subtle

ways on exactly how the deviator formulated his contract, and on what the contract ultimately

committed the deviator to do in the final stage. We prove in a separate Lemma below that the

existence of a contract equilibrium implies the existence of a single commitment correspondence

that non-deviators can use to ’punish’ the deviating player. The surprising part of this lemma is

that provided the non-deviators choose from their punishment correspondences appropriately in the

final stage, this single punishment must deter all possible deviations. The reason that this Lemma

is important for our argument is that an unconditional punishment is central to the reciprocal

contracting idea. As we have explained above, a reciprocal contract responds cooperatively to a

another reciprocal contract, but responds to everything else with a single non-cooperative response.

16 MICHAEL PETERS AND BALZS SZENTES

The Lemma that we prove below shows that definable contracts provide exactly this kind of

structure.

On the other hand, the ability to support cooperation with definable contracts is limited by the

fact that a ’non-cooperative’ player sees the same contracts and makes the same inferences about

the types of the others that a cooperative player does. He or she responds to information revealed

by equilibrium contracts. If the limit of cooperative behavior is the set of allocations that could

be supported by a Myerson mechanism designer, then contract equilibrium will fall short of this

ideal for this reason. A Myerson mechanism designer has the ability to ’punish’ a non-cooperative

player by withholding information about other players’ types.

Our characterization of the set of allocations that can be supported as contract equilibrium

hinges on the information that equilibrium play reveals about players’ types. Fix an equilibrium,

and define the correspondence τ i : Ti → 2Ti to mean the set of types of player i who offer the same

contract as type ti. Once other players see the contract offered by player i of type ti, they should

commonly believe that i’s type lies in the set τ i (ti). The correspondence τ i is an information

partition. Similarly, the correspondence

τ−i (t−i) =
∏

j 6=i

τ j (tj)

describes the information available to player i about the types of the other player. We can use

this information partition to provide a characterization of all outcomes that are supportable as

equilibrium in contracts.

Each contract specifies a set of actions from which players subsequently choose. In this sense,

equilibrium contracts support a commitment correspondence for each player. As contracts depend

on other contracts, which in turn depend on other players’ types, this commitment correspondence

can be written as a mapping ri : T → Ãi. Since the set from which i chooses his action can only

depend on some other player’s type to the extent that the other player’s contract varies with his

type, ri should be measurable with respect to the information partition τ−i.

Contracts specify sets of feasible actions. Ultimately, payoffs are determined by players’ choices

from these sets in the final stage of the game. The contract equilibrium delivers these choices since

Bayesian equilibrium strategies specify what players do in every information set. Let si : T → Ai

denote the outcome function associated with the contract equilibrium.5 Since this is the second

stage of a contracting game, si (t) must lie in ri (t) for each t. It might seem strange that this

outcome function should depend on t instead of ti. The reason that i’s equilibrium actions depend

on the types of other players is twofold. First, i gets to see the contracts offered by each of the

other players. His beliefs vary as the other players’ contracts vary. Secondly, his own commitments

5To simplify the argument slightly, we focus on pure strategy outcomes here. It is completely trivial to extend

this argument to outcomes that involve randomization at the second stage by having the outcome functions be

mappings from T into △ (Ai), restricting the supports of these mappings to lie in ri (t), then letting ui (s (t) , t) be

the expected utility associated with the randomization. With this notation, the inequalities that characterize the

equilibrium remain unchanged.

DEFINABLE AND CONTRACTIBLE CONTRACTS 17

depend on the contracts, and thus the types of the other players. Evidently, player i only observes

types imperfectly by observing the contracts that are offered. This is captured simply by observing

that this induced outcome function must be measurable with respect to the information partition

τ−i.

Our characterization theorem is useful because of the way it deals with off equilibrium contracts

(meaning contracts that are not offered by any of a player’s types along the equilibrium path). Each

off equilibrium contract offered by a deviator specifies a commitment for each array of contracts

offered by the other players. Since the contracts the other players offer depend on their types,

a deviation implies a commitment correspondence fi : T−i → Ãi. Since these types are revealed

only through the contracts that the others offer, this correspondence should be measurable with

respect to the information partition τ−i that captures this information. Let Fi be the set of all

commitment correspondences available to the deviator, i.e., Fi is the set of all τ−i measurable

mappings from T−i into Ãi.

In a contract equilibrium, a deviation leads to two sorts of ’punishments’. First, since the other

players’ contracts specifically condition on the contract offered by the deviator, the non-deviators

will change their commitments. As mentioned above, we are going to show that the punishment

associated with this change in commitments can be taken to be independent of the deviation fi.

However it is possible that the way that the non-deviators choose from sets to which they have

committed themselves will depend on fi. We will show that there is no need to consider behavior

that depends on anything more than fi.

Write the ’punishment’ that player j imposes when player i deviates as pi
j : T−i → Ãj and

pi =
∏

j 6=i pi
j . In a contract equilibrium, this punishment is the consequence of the contract that

j has written, so the punishment can only vary with j’s type to the extent that j’s contract does.

As a consequence, this punishment will be measurable with respect to the information partition

τ−i.

To describe the non-deviators’ behavior in the ex post stage, let si
j : Fi × T−i → Aj . The

non-deviator j can no longer condition his behavior on information revealed by i’ equilibrium

behavior. However, he does observe i’s commitment correspondence in the sense that he observes

the deviator’s contract. He also observes the on equilibrium contracts of the others. This is

captured, as always, by requiring that his behavior be measurable with with respect to τ−ij (t−ij).

The action si
j (fi, t−i) should be contained in pi

j (t−i) for every t−i ∈ T−i and fi ∈ Fi.
6 Finally let

si =
∏

j 6=i si
j be the outcome function associated with a deviation.

We can now state our main theorem.

Theorem 5.1. An allocation rule s : T → A can be supported as a contract equilibrium if and

only if there is a choice correspondence r, a collection of information partitions {τ i}i=1,...,m, pun-

ishments
{
pi
}

i=1,...,m
, and outcome functions

{
si
}

i=1,...,m
such that r is measurable with respect

6If mixing is allowed in the last stage, then the support of si
j (fi, t−j) should be contained in pi

j (t
−i).

18 MICHAEL PETERS AND BALZS SZENTES

to τ =
∏

τ i, each pi is measurable with respect to τ−i =
∏

j 6=i τ j, the support of s (t) is contained

in r (t) for each t, the support of si (t−i) is contained in pi (t), and the following two conditions

hold:

for each i = 1, . . .m, and each ti and t′i

Et−i
(ui (s (t) , t) : ti)

(5.1) ≥ Et−i

(
max

ai∈ri(t′
i
,t−i)

Et′
−i

(
ui

(
ai, s−i

(
t′i, t

′
−i

)
,
(
ti, t

′
−i

))
: ti, t′−i ∈ τ−i (t−i)

)
)

;

and for each ti ∈ T and each f ∈ Fi,

Et−i
(ui (s (t) , t) : ti) ≥

(5.2) max
fi∈Fi

Et−i

(
max

a∈fi(t−i)
Et′

−i

(
ui

(
a, si

(
fi, t

′
−i

)
,
(
ti, t

′
−i

)
, t
)

: ti, t
′
−i ∈ τ−i (t−i)

))
.

We write the proof in three parts. The first part shows the ’if’ part of the theorem. It is a

generalization of the reciprocal contracting idea presented above. Before going on to the more

difficult ’only if’ part, prove the Lemma that makes that part of the theorem work. What it shows

is that if all the non-deviators are offering definable contracts, then there must be a punishment

correspondence pi (t−i) for the deviators such that for any commitment correspondence f the

deviator wants to implement, there must be a way for him to write his deviating contract so that

the non-deviators respond with the same ’punishment’ correspondence pi (t−i). As a result of this,

every player must do better in a contract equilibrium than does by deviating with any of the

contracts that elicit this punishment. This is the key to the only if part of our proof, which follows

the Lemma.

Proof. [Proof of the “if” part.] Let x denote
(
x

tj

j

)
j∈{1,...,m}, tj∈Tj

. Consider the following contract

in |T | free variables:

cti
x ([c1] , ..., [cm])

=

ri (t) if ∀k∃tk ∈ T k s.t.
[
< xtk

k >(x)
]

= [ck] ,

pj
i (t−j) if

{
k : ∄!tk ∈ T k s.t.

[
< xtk

k >(x)
]

= [ck]
}

= j,

Ai otherwise and if k + 1 > k if k ∈ H (ti) ,

where H (ti) = {j : τ (tj) = τ (ti)}. The last statement is in the third line is always true. Such a

statement, however, makes it possible that a player with two different types offers two different

but computationally equivalent contracts. Let γti

i denote the Godel Code of this contract and let

DEFINABLE AND CONTRACTIBLE CONTRACTS 19

γ =
(
γti

i

)
i,ti . The equilibrium contract offered by player i with type ti will be: cti

γ . Then

cti
γ ([c1] , ..., [cm])

=

ri (t) if ∀k∃tk ∈ T k s.t.
[
< γtk

k >(γ)
]

= [ck] ,

pj
i (t−j) if

{
k : ∄tk ∈ T k s.t.

[
< γtk

k >(γ)
]

= [ck]
}

= j,

Ai otherwise and if k + 1 > k if k ∈ H (ti) ,

Notice that < γ
tq
q >(γ)= c

tq
γ . Therefore, the previous contract can be rewritten as

cti
γ ([c1] , ..., [cm])(5.3)

=

ri (t) if ∀k∃tk ∈ T k s.t.
[
ctk
γ

]
= [ck] ,

pj
i (t−j) if

{
k : ∄tk ∈ T k s.t.

[
ctk
γ

]
= [ck]

}
= j,

Ai otherwise and if k + 1 > k if k ∈ H (ti) ,

Next, we specify the strategies of the players in at the second stage. If for all j there is a tj ∈ T j

such that Player j offers a contract c
tj
γ , then Player i takes action si (t). Suppose now that one

player deviated, say Player k, and he offered a contract ck, and Player j offered c
tj
γ for all j 6= k.

Define fk : T−k → Ãk as follows:

(5.4) fk (t−k) = ck
([

ck
]
,
[
ctj
γ

]
j 6=k

)
,

where
[
c
tj
γ

]
j 6=k

denotes the vector of the Godel codes of players other than k. Then player ı́’s

strategy is sk
i (fk, t−k). Notice that by (5.3) these second-stage strategies are consistent with the

restrictions imposed by the contracts, that is, si (t) ∈ ri (t) and sk
i (fk, t−k) ∈ pk

i (t−k). (Notice

that we do not have to specify the strategies if more than one players deviate at the contracting

stage.)

We shall argue that the strategies described above constitute an equilibrium in the contracting

game. First, we show that the strategies {si}
m
i=1 are optimal in the second stage. Consider the

constraint (5.1) with ti = t′i. Then this constraint says that si (t) is a best response against the

strategies of the other players. It remained to show that players do not have incentive to deviate

at the contracting stage. Suppose now that player k with type tk offers a contract ck which is

different from ctk
γ . We shall consider two cases. Case 1: ck = c

t′k
γ but τk (tk) 6= τk (t′k). Then,

by (5.1), this deviation is not profitable no matter what is the strategy of Player k at the second

stage. Case 2: ck 6= c
t′k
γ for all t′k ∈ T k. Such a deviation induces Player i with type ti to take

action sk
i (fk, t−k). Hence, by (5.2) such a deviation cannot be profitable.

...

Let cti

i denote the contract of Player i with type ti. Define τ (t) =
{

t′ ∈ T : ∀i cti

i = c
t′i
i

}
.

Lemma 5.2. For any array
{
cti

i

}
i=1,...,m, ti∈T i of contracts and every i, there are τ−i measurable

functions, pi
k (t−i) for all k 6= i, such that for any τ−i measurable function fi : T−i → Ãi , there is

20 MICHAEL PETERS AND BALZS SZENTES

a contract c∗i such that

c∗i

(
[c∗i] ,

([
c
tj

j

])
j 6=i

)
= f (t−i)

and for all k 6= i

ctk

k

(
[c∗i] ,

([
c
tj

j

])
j 6=i

)
= pk

i (t−i) .

Proof. Suppose the lemma is false. Then for each τ−i measurable function pi =
(
pi

k

)
k 6=i

: T−i →

Ã−i, there is some τ−i measurable function f ′
i : T−i → Ãi such that Player i cannot write a

definable contract for which

(5.5) c∗i

(
[c∗i] ,

([
c
tj

j

]
j 6=i

))
= f ′ (t−i)

and

(5.6) ctk

k

(
[c∗i] ,

([
c
tj

j

]
j 6=i

))
= pk

i (t−i)

for all k 6= i. For each τ−i measurable function pi =
(
pi

j

)
j 6=i

, let gpi = f ′ where f ′ is one of the

functions for which (5.5) and (5.6) cannot be satisfied with any contract c∗i . Since the the set of

τ−i measurable functions from T−i into Ãi is finite, as is the set of τ−i measurable functions from

T−i into Ãi, the function g is definable.

Let qx
j (t−i) denote c

tj

j

([
< x >(x)

]
,

([
c
tj

j

]
j 6=i

))
and qx =

(
qx
j

)
j 6=i

. Define the following con-

tract with one free variable for player i:

cx

(
[ci] , ([cj])j 6=i

)
=

gqx (t−i) if ∀j 6= i : c
tj

j = cj .

Ai otherwise.

Since g is a definable function, this contract with one free variable is definable. Let γ be its Godel

code and define the contract

cγ

(
[ci] , ([cj])j 6=i

)
=

gqγ (t−i) if ∀j 6= i : c
tj

j = cj .

Ai otherwise.

which is equal to

cγ

(
[ci] , [cj]j 6=i

)
=

gqγ (t−i) if ∀j 6= i : c
tj

j = cj .

Ai otherwise.

We argue that with pi
k (t−i) = ctk

k

(
[cγ] ,

[
c
tj

j

]
j 6=i

)
, the contract cγ satisfies both (5.5) and (5.6).

First, notice that pi
k was chosen so that (5.6) is automatically satisfied. Second, by the definition

of the function g:

cγ

(
[ci] ,

[
c
tj

j

]
j 6=i

)
= f (t−i) ,

and hence (5.5) is satisfied. However, by the definition of g, there is no contract for which these

conditions are satisfied, a contradiction.

DEFINABLE AND CONTRACTIBLE CONTRACTS 21

...

Proof. [Proof of the “only if” part of the theorem.] Fix an equilibrium in the contracting games.

We shall construct the objects τ , s, {ri}
m
i=1 ,

{
si
}m

i=1
, and

{
pi
}m

i=1
such that the constraints (5.1)

and (5.2) are satisfied. Denote the equilibrium contract of Player i with type ti by cti

i . Define the

partition, τ , as follows:

τ (t) =
{

t′ ∈ T : ∀i cti

i = c
t′i
i

}
.

Next, we construct the functions {ri}
m
i=1. Let

(5.7) ri (t) = cti

i

([
cti

i

]
,
([

c
tj

j

])
j 6=i

)
,

for all i ∈ {1, ..., m}. Notice that ri (t) ∈ Ãi. In addition, ri is measurable with respect to τ−i (t−i)

by the definition of τ . The second-stage strategies depend on the contracts offered at the first

stage. We first deal with strategies on the equilibrium path. Let qti

i

(([
c
tj

j

])
j 6=i

)
denote the

second stage strategy of Player i with type ti. Observe that

(5.8) qti

i

(([
c
tj

j

])
j 6=i

)
∈ cti

i

([
cti

i

]
,
([

c
tj

j

])
j 6=i

)

must be satisfied according to the rules of the contracting game. Define si (t) to be qti

i

(([
c
tj

j

])
j 6=i

)
.

The function si (t) is obviously measurable with respect to τ−i (t−i). In addition, si (t) ∈ ri (t) by

(5.7) and (5.8). Let s (t) denote (s1 (t) , ..., sm (t)).

We are ready to show that the triple (τ, {ri} , s) satisfy (5.1). First, consider this constraint with

t′i = ti. Then this constraint requires qti

i

(([
c
tj

j

])
j 6=i

)
to be best-response for Player i against the

strategies of the other players. Since qti

i was an equilibrium strategy, it has to be a best response

and hence, (5.1) is indeed satisfied. Second, consider (5.1) with t′i 6= ti. Then, this constraint

requires Player i with type ti to prefer to offer contract cti

i instead of c
t′i
i . Indeed, the left-hand-

side is just his equilibrium payoff and the right-hand-side is the maximum payoff of Player i with

type ti if he offered c
t′i
i . Since, cti

i was an equilibrium contract by assumption, such a deviation

cannot be profitable and hence, (5.1) has to be satisfied.

It remained to construct
{
si
}m

i=1
and

{
pi
}m

i=1
and show that (5.2) is also satisfied. |Define

pi
k (t−i) for all k 6= i and for all i ∈ {1, ..., m} according to the statement of Lemma 5.2. In

addition, let cfi

i denote the contract of Player i such that

cfi

i

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
= fi (t−i)

and for all k 6= i

ctk

k

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
= pk

i (t−i) .

22 MICHAEL PETERS AND BALZS SZENTES

Let qi
k

(
fi,

([
c
tj

j

]
j 6=i

))
denote the off-equilibrium strategy of Player k if Player i offered the off-

equilibrium contract cfi

i and Player j (j 6= i) offered c
tj

j . Define si
k (fi, t−i) to be qi

k

(
fi,

([
c
tj

j

]
j 6=i

))
.

The function si
k is measurable with respect to τ−ik (t−ik). Given these notations, (5.2) requires

that Player i cannot profitably deviate by offering an off-equilibrium contract in the form of cfi

i ,

and hence, this constraint is satisfied.

The following very simple example illustrates how contract equilibrium works in the Bayesian

case. In particular, it illustrates how contract equilibrium can be used to make one player’s action

depend on another player’s type. In this example, the row player is privately informed and has one

of two equally likely types, t1 and t2. Each player has two possible actions in the default Bayesian

game, {a1, a2} for the row player, {b1, b2} for the column player. The payoffs for each of the row

player’s types are given in the following tables:

b1 b2

a1 3, 3 −1, 4

a2 0,0 0, 0

b1 b2

a1 0,0 0,0

a2 −1, 4 3, 3

.

This is a relatively simple coordination problem. The mechanism designer can implement the

allocation s (t1) = (a1, b1) and s (t2) = (a2, b2) by simply asking the informed agent his type, then

instructing the uniformed agent which of his actions to take. This allocation cannot be supported

by a simple Bayesian equilibrium because the uninformed player must choose his action before he

learns the informed players type.

Despite the fact that the uninformed player would not want to take correct action if he knew

the informed player’s type, there is a type contingent punishment p1
2 (t1) = {a2} and p1

2 (t2) = {a1}

which will drive the informed player’s payoff to zero no matter what type contingent action rule

he chooses. For this reason, it must be that (5.1) and (5.2) are satisfied, and the allocation rule s

can be implemented as a contract equilibrium.

The way this equilibrium works is that the informed player writes a different ’reciprocal’ contract

for each of his possible types. These contracts both specify the same target Godel code, say n∗.

The contract for type t1 says that if the Godel code of the uninformed player’s contract is n∗, then

the informed player will commit to action a1. If the Godel code of the uninformed player’s contract

is anything else, then the informed player of type t1 will commit to action a2. The contract for t2

is similar with the actions reversed. Encoding these contracts gives a pair of Godel codes, say r1

and r2, corresponding to each of the informed player’s possible contracts. The uninformed player

writes a contract that says that if the Godel code of the informed player’s contract is r1, then he

will commit to b1, if the Godel code of the informed player’s contract is r2, then he will commit

to b2, otherwise he will commit to {b1, b2} and choose among them ex post. The theorem above

shows that there is a triple of integers (n∗, r1, r2) such that the Godel code of the uninformed

player’s contract is n∗. This simple example illustrates that by conditioning his commitment on

DEFINABLE AND CONTRACTIBLE CONTRACTS 23

the contract offered by the informed player, the uninformed player is able to make his action

depend on the informed player’s type.

In this example, the contract equilibrium supports everything that a mechanism designer might

want to implement. However, as we mentioned in the introduction to this section, contract equi-

librium imposes a restriction on feasible allocations that a mechanism designer can ignore. The

participation constraint differs. In a contract equilibrium, a deviator can condition at the interim

stage on information revealed by contracts. A non-participant in a Myerson mechanism cannot.

This gives the ’non-participant’ an advantage that limits the set of allocations supportable in the

contract equilibrium. Furthermore, the Myerson mechanism designer can control the information

the non-participant has when he chooses his final action. In the contract equilibrium the non-

participant has the same information as the participants. Again, this limits the set of allocations

that can be supported.

To illustrate consider the following variant of the example given above. There are again two

players each with two possible actions. The row player has two possible types, either t1 or t2,

which are equally likely. The column player has no private information. The payoffs for each of

the informed player’s possible types are given in the following tables:

b1 b2

a1 3, 3 −1, 4

a2 0, 4 2,−1

and

b1 b2

a1 2,−1 0, 4

a2 −1, 4 3, 3

.

The Myerson mechanism designer has no problem implementing the allocation s (t1) = (a1, b1)

and s (t2) = (a2, b2). He does this by inviting the players to participate in a mechanism in which

he asks the row player to report his type. If he reports t1 then he instructs the players to use

actions a1 and b1, and similarly when type t2 is reported. By agreeing to participate, the players

commit themselves to follow the mechanism designer’s instruction. This is incentive compatible

because the row player’s payoff falls from 3 to 2 if he misreports his type.

The allocation is individually rational in the usual mechanism design sense as long as a refusal

to participate by either player results in both players playing the (unique) Bayesian equilibrium of

the original game. In this equilibrium every player of every type randomizes with equal probability

over his two possible actions. The informed player’ payoff in this equilibrium is 1 independent of

his type, while the uninformed player’s payoff is 5
2 .

Now suppose that this is implementable in contract equilibrium. In particular, since the actions

are different, the contracts offered by each of the row player’s types must be different. Then by

Theorem 5.1, there must be a type contingent punishment that the row player can impose on a

’deviating’ column player that will make any type contingent commitment by the column player

unprofitable at the interim stage.

No matter what the row player does, the column player can improve his payoff by simply

committing himself to choose on of his actions ex post. If the row player punishes by committing

to a single (type contingent) action, then the column player simply exploits his knowledge of the

24 MICHAEL PETERS AND BALZS SZENTES

row player’s type to raise his payoff to 4. So if the row player wants to punish, he has to commit

himself to choose his action ex post as well. Since the argument is the same no matter what the row

player’s type, suppose that this type is t1. Given the commitment made by the column player, the

row player needs to choose a randomization - say playing a1 with some probability π. No matter

what π is, the column player can choose an action that yields a payoff strictly higher than 3. For

instance if π = 1, then the row player would play b2 and receive an expected payoff 4. Otherwise if

the row player randomizes with some probability between 0 and 1 when he has type 1, the column

player will receive a payoff strictly higher than 3 by choosing action b2.

This argument illustrates another extreme in that the contract equilibrium can support no more

than what is possible in the unique Bayesian equilibrium of the original default game. A slightly

more complicated example illustrates a final possibility - contract equilibrium might implement

more than the Bayesian equilibrium of the default game, but less than what is implementable by

a mechanism designer. There are again two equally likely types for the row player. However, each

player has three actions, with payoffs for each of the row player’s types given as follows:

b1 b2 b3

a1 3, 3 −1, 4 0, 0

a2 0, 4 2,−1 4,−1

a3 0, 0 −1, 16 2, 11
4

b1 b2 b3

a1 2,−1 0, 4 0, 0

a2 −1, 4 3, 3 4,−1

a3 −1, 16 0, 0 2, 11
4

The payoffs here are similar to what they were in the first example. In particular, there is still

a Bayesian equilibrium in which both players randomize with equal probability over their first two

actions. The payoffs are the same as above, 1 for the informed player no matter his type, and
5
2 for the uninformed player. Similarly, a Myerson mechanism designer can again implement the

allocation rule s (t1) = (a1, b1) and s (t2) = (a2, b2) exactly as he does in the first example.

Again, the proof that the allocation rule α cannot be supported as an equilibrium is by contra-

diction. If it could be supported, it would be supported by having each of the informed player’s

types offer a different contract. The uninformed player would have to do at least as well in this

equilibrium as he would do by committing himself to the set {b1, b2} at the interim phase, then

choosing an action from this set that maximizes his payoff conditional on the information he gleans

about the informed player’s type. It isn’t too hard to see from the table that no matter how the

different types of player 1 choose over the actions a1, a2 and a3, he can support a payoff that

strictly exceeds 3. For example, if the probability weight that type 1 puts on the action a3 is high

enough to make the action b1 yield a payoff below 3, then the action b2 will yield a payoff above 3.

Now, however, there is an allocation rule that can be supported as a contract equilibrium which

is not a Nash equilibrium of the default game. This is the one in which the informed row player

takes action a3 while uninformed column player takes action b3 independent of the row player’s

type. This is supported with a pair of reciprocal contracts, say rr and rc (standing for reciprocal

contracts for the row and column player). The contract rr is a definable function that restricts

the row player’s ex post choice to a3 provided the column player offers a contract whose Godel

DEFINABLE AND CONTRACTIBLE CONTRACTS 25

code is equal to the Godel code of rc. For any other contract offer by the column player, the row

player commits to the pair {a1, a2} then randomizes over them ex post with equal probability. This

definable contract is offered by both the row player’s types. The column player’s contract commits

him to the action b3 ex post if the row players contract has the Godel code of the contract rr.

Any other contract triggers a commitment to {b1, b2} and induces the column player to randomize

between these two choices ex post with equal probability. Recall that there is a Bayesian Nash

equilibrium of the original default game in which both players randomize with equal probability

between these the choices {a1, a2} and {b1, b2} in which the row player’s payoff is 1 no matter what

his type, and the column player’s payoff is 5
2 . Since the Bayesian Nash equilibrium provides best

reply payoffs, no player finds it worthwhile to deviate since their payoffs when they offer rr and rc

are 2 and 11
4 respectively.

6. Other Mechanisms

If contracts are complete and perfectly enforceable, as they are here, there are other indirect

mechanisms that might be used to implement desirable allocation rules. One possibility is that

players publicly negotiate an outcome, for example, they way that trade agreements are negoti-

ated. Once negotiations have concluded, the players simultaneously decide whether or not to sign

a contract that binds them to a set of actions, or to choose their action unilaterally. This kind of

mechanism is complex since it requires a description of the extensive form of the bargaining game.

However, it would resemble the contracts mechanism in the sense that the actions that players ulti-

mately take depend on public messages (behavior during negotiations instead of contracts). Then

a player who chose not to participate in the eventual agreement would have the same information

as he would have had if he participated. If players are allowed to make unilateral commitments, he

could then commit himself to a subset of his actions that depends on the information the others

had revealed during the negotiation.

Assuming that the bargaining process supports an information partition like the one given

above, the difference between this bargaining mechanism and the equilibrium in contracts is subtle.

In the bargaining mechanism, participants condition their punishment of a non-deviator on the

information that he or she reveals during the bargaining, and possibly on the unilateral commitment

that non-participant makes once the contracting process breaks down. A non-participant can then

use a strategy that is contingent on the ex post information revealed by the bargaining process.

The contract equilibrium forces the deviator to reveal how he would have committed himself not

only to the information that is revealed ex post, but also to all of the information that he might

have received instead. The non-deviators can condition their punishment on this, while in the

bargaining mechanism they cannot. The set of punishments available to non-deviators in the

contracting game would seem to be larger than it is in the bargaining mechanism for this reason.

It seems reasonable to conclude that the set of allocations supportable with contracts is larger than

the set of allocations supportable with bargaining for this reason.

26 MICHAEL PETERS AND BALZS SZENTES

The bargaining mechanism will differ from the contract equilibrium in another way. Bargaining

is typically sequential, with players responding to partial information they receive about other

participants during the negotiation. It is possible that the information that players reveal about

themselves might depend on what they learn about others - a concession which might be sensible for

some player’s type might be made only if other players reveal certain information. The information

partition supported by equilibrium play might then have the property that ι−i (t−i) might depend

on player i’s type (the information revealed by equilibrium play might not be separable). This

makes it quite difficult to compare bargaining mechanisms with the contracting equilibrium.

References

[1] Anderlini, L: Some Notes on Church’s Thesis and on the Theory of Games.Theory and Decision, 29, 19-52,

1990.

[2] Kyle Bagwell and Robert W. Staiger. Reciprocity, non-discrimination and preferential agreements in the mul-

tilateral trading system. European Journal of Political Economy, 17(2):281–325, June 2001.

[3] Canning, D: Rationality, Computability, and Nash Equilibrium.Econometrica, 60(4), pp. 877-888, 1992.

[4] L. Epstein and M. Peters. A revelation principle for competing mechanisms. Journal of Economic Theory,

88(1):119–161, September 1999.

[5] C Fershtman and K.L. Judd. Equilibrium incentives in oligopoly. American Economic Review, 77:927–940,

1987.

[6] Seungjin Han. Menu theorems for bilateral contracting. Journal of Economic Theory, 127(1):157–178, November

2006. available at http://ideas.repec.org/a/eee/jetheo/v131y2006i1p157-178.html.

[7] Kalai, A.T., Kalai, E., Lehrer, E., and D. Samet. A Commitment Folk Theorem. manuscript, Tel-Aviv Univer-

sity, April, 2007.

[8] Michael Katz. Observable contracts as commitments: Interdependent contracts and moral hazard. Journal of

Economics and Management Strategy, 15(3):685–706, September 2006.

[9] David Martimort and Lars Stole. Communications spaces, equilibria sets and the revelation principle under

common agency. University of Chicago unublished manuscript, 1998.

[10] Michael Peters. Common agency and the revelation principle. Econometrica, 69(5):1349–1372, September 2001.

[11] S.C. Salop. Practises that Credibly Facilitate Ologopoly Coordination. Cambridge, MIT Press, 1986.

[12] Leo Simon and W. Zame. Discontinuous games and endogenous sharing rules. Econometrica, 58(4):861–872,

1990.

[13] Moshe Tennenholz. Program Equilibrium. Games and Economic Behavior,49(2):363–373,2004.

[14] Takuro Yamashita. A revelation principle and a folk theorem without repition in games with multiple principles

and agents. manuscript, Stanford University, February 2007.

