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Abstract

Normative theories of individual choice in economics typically assume that interacting 

agents should each act individualistically: i.e., they should maximize their own utility 

function. Specifically, game theory proposes that interaction should be governed by Nash 

equilibria. Computationally limited agents (whether artificial, animal or human) may not, 

however, have the capacity to carry out the sophisticated reasoning to converge directly on 

Nash equilibria. Nonetheless it is often assumed that Nash equilibria will be obtained, in any 

case, if agents embody simple learning algorithms like reinforcement learning. If so, then 

learners should converge on Nash equilibria, after sufficient practice in playing a game---and 

hence, for example, individualistic agents should end up playing D (defect) in one-shot 

Prisoners’ Dilemmas (PD). In an experiment and in a multi-agent simulation, we show, 

however, that this is not always the case---under certain circumstances, reinforcement 

learners can converge on co-operative behaviour in PD. That is, even though each agent 

would receive higher pay-off from switching to D, agents obtain more reinforcement, on 

average, from playing C, and hence C is more strongly reinforced. This effect arises from a 

well-known statistical paradox, Simpson’s paradox. We speculate that this effect may be 

relevant to some aspects of real-world human co-operative behaviour.
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Introduction

Modern society rests on the fact that people are routinely kind to strangers, whom 

they will not meet again. People take turns in shops; give way to other drivers; risk their lives 

attempting to save drowning swimmers. 

Much apparent altruism can be “explained away” in many situations, by observing 

the existence of hidden benefits: by reproductive advantages for “selfish genes” (Dawkins, 

1976) when interacting with kin (Hamilton, 1964); by the long view, if our kindness may be 

reciprocated (Axelrod & Hamilton, 1981; Axelrod, 1984; Nowak & Sigmund, 1989); or by 

social approval, if we are being observed by peers (Wedekind & Braithwaite, 2002; Satow, 

1975). Pure kindness may, therefore, arise by overextension of “impure” kindness to cases 

where hidden benefits are not available. 

Pure  kindness  remains  puzzling,  however,  in  two  respects.  The  first  puzzle  is 

stability: why is this kind of kindness not unlearned through years of social behaviour. Why 

do people not learn that, when interacting with people we will never see again, selfishness 

pays (Schneider & Mockus; 1974; Cooper, DeJong, Forsythe, & Ross, 1996). The second 

puzzle is the folk belief in “good Karma:” the view that, independent of direct causal links 

(e.g., reciprocation) that “what goes around comes around,” that “kindness begets kindness.” 

That is, not only do we persist in being kind to strangers for no pay-back; but we form an 

illusory belief that it is, nonetheless, good for us in terms of long-run self-interest (Baron, 

1997). 

Ethical  principles surely explain some aspects  of  pure kindness.  Yet,  we suggest, 

another force may be at work---that even when kindness does not  cause good outcomes, it 

may  be  correlated with  good  pay-offs.  Correlation  with  good  outcomes,  whether 

underpinned by causation or not, determines whether behaviours is repeated, according to 
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widely used theories of associative learning, derived from Thorndike and Skinner (see Sutton 

& Barto, 1998, for a review).  

Why might such non-causal correlations between pure kindness and good outcomes 

occur? If people engaged in pure kindness randomly, they would not. But we know that this 

kindness is not random, but is influenced by a range of “situational” factors (e.g., Colman, 

1995).  For  example,  kindness,  like  other  social  behaviors,  is  substantially  influenced by 

whether  agent  and  recipient  identify  with  each  other  (e.g.,  are  in  the  same  national, 

professional,  religious,  or  other,  group);  whether  they  make  eye-contact;  whether  the 

environment primes helping behavior (e.g., church vs. casino); tendency to imitate recently 

observed behavior of others (Hurley & Chater, 2005). Factors such as these lead, we suggest, 

to pure kindness being highly correlated across individuals: in some situations, people will 

tend to show high levels of pure kindness, in others they will not. 

This correlation means that people tend to be kind to others in those situations in 

which people tend to be kind to them, even where the two are not causally linked. Optimal 

pursuit of self-interest, as predicted by evolutionary and economic models, would predict that 

people should take the benefits of kindness, but give out none themselves, rapidly 

eliminating pure kindness. Yet, if behaviour is shaped by simple principles of reinforcement 

learning, the correlation between own kindness and good outcomes from others’ kindness 

could lead to kindness being reinforced, entrenching pure kindness. 

We propose that one factor contributing to these effects arise from a well-attested 

cognitive blindspot—that people, and their associative learning mechanisms, cannot correct 

for biased samples (see Fiedler, 2000; Fiedler & Juslin, 2006). Specifically, people’s 

experience of cooperation may constitute a biased sample, for which they are unable to 

correct. The core idea is that, however co-operative people may be, there will some situations 
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which especially encourage co-operation (e.g., ordering queuing in shopping); we call these, 

nice situations; and there are some situations where people do not tend to co-operate (e.g., 

barging ahead at the opening of the January sales); call these nasty situations. Because all 

players are influenced by whether they are in nice or nasty situation, their behaviour will be 

correlated. Overall, people will tend both to cooperate, and be cooperated with, in nice 

situations; but the reverse in nasty situation. Note that this looks superficially like 

reciprocation---when I am (un)cooperative, people are (un)cooperative with me. But there is 

no causal connection between each person’s action—they are merely correlated because they 

are both influenced by the situation. We shall see that, under certain circumstances of this 

kind, it is possible for this correlation to have the result that the average reinforcement 

obtained for playing C is greater than the average reinforcement for playing D. Hence, 

although naked self-interest is actually best served by continual defection against all-comers, 

a population of self-interested learners unable to correct for sampling bias may nonetheless 

end up cooperating. Indeed, reflecting on the pay-offs of both outcomes, such learners might 

be expected to erroneously conclude that, because own cooperation is correlated with the 

cooperation of others that ‘what goes around comes around.’ Here, we shall focus on 

providing an “existence proof” of this phenomenon---first by simulations of interacting 

reinforcement learning agents, and second by an experimental demonstration with human 

participants.

Normative theories of interactive decision making

In economics, game theory has typically been viewed as providing the normative 

theory of interacting agents (Fudenberg & Tirole, 1996). In particular, it is typically assumed 

that interacting agents should follow Nash equilibria---i.e., patterns of behaviour in which 

each agent cannot improve its outcome, given the other agent’s behaviour. This type of 
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normative explanation is fundamentally individualistic---that is, each agent chooses its 

behaviour to maximize the outcome according to its own preferences (although this does not 

preclude, of course, that an agent’s preferences may be altruistic, rather than selfish). 

Three issues concerning the status of this style of normative explanation may be 

raised, which have relevance to understanding interacting systems of agents, whether 

biological or artificial. 

The first issue is that many scenarios involving interaction define games that have 

many Nash equilibria, only some of which are observed. A substantial body of game-

theoretic research attempts to refine the notion of Nash equilibrium (e.g., by introducing 

notions such as the “trembling hand” equilibrium), to attempt to pick out those equilibria that 

are experimentally observed. 

The second issue concerns the opposite problem---not that there are too many Nash 

equilibria; but that observed behaviour (particularly in real-world animal or human 

behaviour; or in the laboratory) does not appear to correspond to a Nash equilibrium at all. 

To focus on the most celebrated examples, which we will discuss extensively below, people 

frequently co-operate, i.e., play C, in scenarios which appear to have a one-shot Prisoners’ 

Dilemma structure (see e.g. Dawes & Thaler, 1988). But the only Nash equilibrium in the 

Prisoners’ Dilemma is that people play D (see Figure 1). Whatever agent 2 does, agent 1’s 

pay-off will be higher if it plays D; and vice versa. The mismatch between normative theory 

and empirical results concerning human interactive behaviour can be addressed in a number 

of ways: e.g., by assuming that if people play the same game many times, against different 

agents, they will eventually converge on the Nash equilibrium; that there are additional pay-

offs that affect the agents’ utilities, in addition to those specified in the game; or that a 

revised normative theory that switches from an individualist, to a ‘team’ perspective, may be 
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appropriate (Bacharach, 1999; Gold, in press; Hurley, 1989). Yet a further line of 

explanation, concerning reciprocation, arises for a case that we do not consider: that of 

repeated PD against the same opponent (and where the identity of agents is known). 

Repeated PD is, from a normative game-theoretic standpoint, a completely different game, 

because each trial of the game can potentially influence the other agent’s play in the next 

trial. Repeated PD is best modelled in terms of agents choosing strategies which define their 

sequence of responses to other agents’ strategies over the course of repeated interaction. 

Conventional game theory has little purchase on this problem---in “strategy space” the 

repeated PD game has many possible Nash equilibria, one of which isC (by the “folk-

theorem,” e.g., Kreps, 1990). Repeated PD has been extensively studied using agent-based 

simulations (e.g., Axelrod, 1984). We mention repeated PD here principally to distinguish it 

from the one-shot PDs that we consider here. In one-shot PD, players are anonymous. One-

shot PDs can, however, be played many times. Crucially, players are paired afresh with new 

partners for each game (and even if, in a simulation or experimental context, a partner in a 

later game is the same as the partner in an earlier game, the player will not be aware of this). 

We shall consider one-shot PDs only henceforth.

INSERT FIGURE 1 ABOUT HERE

Alongside the issues of too many Nash equilibria, and patterns of behaviour that do 

not seem to fit any Nash equilibrium, stands a third issue. This concerns the underlying 

computational machinery that agents require for the Nash equilibrium to be attained---

machinery that may appear to substantially exceed the capacities of human reasoning. From 

the normative perspective of game theory, the stability of the Nash equilibrium rests on the 

assumption that each agent adopts ‘best-reply’ reasoning. That is, the agent attempts to make 

the ‘best reply’ to whatever the other agent will do; and, moreover, assumes that the other 
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agent(s) will also follow best-reply. Best-reply reasoning rules out patterns which are not 

Nash equilibria, because, by definition, outside a Nash equilibrium, one of other agent can 

make a better reply, in terms of its own utility function---and this is precisely what the 

conditions of a Nash equilibrium rules out. Yet best-reply reasoning is typically extremely 

subtle---involving the ability to reason recursively about the behaviour of the other. This may 

be difficult for cognitively bounded agents (indeed, human game playing seems to be subject 

to extremely severe bounds, in terms of the depth of such recursive inference, Colman, 

2003). This might appear to suggest that the normative predictions of game theory may not 

be helpful in understanding the behaviour of artificial and biological agents.

One natural way to address this last issue, of computational limitations, is to assume 

that, although agents may be computationally very simple, elementary processes of learning 

may lead them to fall into Nash equilibria. There has, in particular, been considerable interest 

in research on behavioural models game-playing on reinforcement learning (e.g., Erev & 

Roth, 1998): i.e., that agents tend to repeat behaviours according to the average degree of 

“reinforcement” with which they are associated---i.e., the average utility for the agent of the 

outcome of the game associated with each response. From a psychological point of view, this 

corresponds to following Thorndike’s (1911) classic “Law of Effect”---repeating behaviours 

to degree that they are followed by positive outcomes; and stamping out behaviours to the 

degree that they are followed by negative outcomes. There is hope that this tack may also 

help deal with the first two issues, concerning equilibria. Perhaps agents will only stabilize of 

empirically observed Nash equilibria and not those that are not observed (e.g., Binmore, 

1994). Moreover, perhaps (as we shall see below) reinforcement learners may under certain 

circumstances fail to converge on Nash equilibria---and this might explain empirical 

observed violations of the Nash equilibrium. 
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Agents that learn by reinforcement are attractive in a number of ways. They learn 

according to very simple principles; they involve no “reasoning” (best-reply or otherwise) 

about the other agents behaviour; and they appear likely to fall naturally into Nash equilibria. 

Simplifying somewhat, the idea is that if a group of agents falls into a stable pattern of 

behaviour at all (of course, it is possible that behaviours might cycle or move ergodically, 

without settling), then the agents must be in a Nash equilibrium. Concretely, both agents 

should end up playing D in Prisoners’ Dilemma. The intuition is that, whatever the other 

agent does, each agent will obtain more reward from playing D rather than C; and hence a 

reinforcement learning algorithm will gradually eliminate C in favour of D. 

As we show in this article, however, reinforcement learners need not, despite this 

apparently ineluctable line of argument, converge on Nash equilibria. This is because 

reinforcement learning methods are based on the average amount of reinforcement that each 

behaviour actually receives; and it is possible that these averages can be systematically 

misleading, if the two responses, C and D, are not generated independently, but are correlated 

by other aspects of the game that can affect the outcome. The formal basis of this effect is a 

statistical phenomenon known as Simpson’s paradox (Simpson, 1951). 

In this article, we show that, against intuition, a simple reinforcement learning 

algorithm can lead to stable non-Nash-equilibria CC responses in multiple one-shot PD 

games, against different agents. We also show that this result can occur human participants, 

where the typical drift toward playing D with practice is replaced by stable CC responding. 

In the Discussion, we ask whether, in practice, the Simpson’s paradox effect that we describe 

may be one force that helps ensure the stability of cooperative behaviour in real world human 

interactive behaviour. We also suggest that our results throw a new light of the role of game 
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theory as a normative framework for understanding the patterns of behaviour of interacting 

agents. 

Simpson’s paradox: How reinforcement learners find stable non-Nash equilibria

Must populations of reinforcement learners converge on DD?

As we have seen, from the definition of PD, it follows that an agent should, from a 

purely individualistic perspective, play D, whether the other agent plays C or D. To spell this 

out, from the point of view of, say, Agent 1, there are two ways the world can be. The world 

may be such that Agent 2 has played C; or the world may be such that Agent 2 has played D. 

The pay-off for D is greater than the pay-off for C, either both of these situations. It seems 

immediately to follow that the pay-off for D, averaged across these two states of the world, 

must be greater than the average for C, averaged across those two states of the world. 

Therefore, it seems to follow that the average reinforcement to D must necessarily be greater 

than the average reinforcement to C, and hence that a reinforcement learner will reinforce D, 

and eliminate C; and hence that a set of interacting reinforcement learners, playing one-shot 

prisoner’s dilemmas against different players, must attain the Nash equilibrium of D, D. 

But this chain of argument, although appealing, is flawed, because, despite intuition, 

it turns out that the average outcome for C can be greater than D, even though the outcome 

for D is higher than C in both of the two possible states of the world---when the other agent 

plays C or the other agent plays D. Hence, it is possible that a reinforcement learner may not 

necessarily drift inexorably to D, but may continue to cooperate by playing C. This strange 

phenomenon is an example of Simpson’s paradox, which we briefly describe.

Simpson’s paradox and problem of biased sampling

INSERT FIGURE 2 ABOUT HERE
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Simpson’s paradox demonstrates that two variables can be negatively correlated, even 

though, given any fixed value of a third variable, they are positively related (or vice versa). 

To illustrate consider the set-up depicted in Figure 2. Suppose that we consider the 

introduction of a new inhaler to help people with breathing difficulties. The inhaler is 

typically prescribed for people with asthma---but it turns out also to be helpful in improving 

the breathing of people without asthma. Thus, whatever the value of the third variable, 

whether the person has asthma or not, the proportion of people with clear breathing is higher 

if the inhaler is used. Specifically, in the fictitious data in Figure 2, the inhaler increases the 

proportion of asthma sufferers with clear airways from 10% to 44%; and increases the 

proportion of non-asthma sufferers with clear airways from 90% to 99%. But if we average 

our patient data together, we get the opposite result! People who use the inhaler typically 

have less clear breathing than people who do not: overall, 50% of people using an inhaler 

have clear airways, compared with 82% who do not use the inhaler. Thus we have an 

apparently paradoxical result: that the inhaler appears to harm breathing overall, even though 

it helps the breathing of both the asthmatic and non-asthmatic groups considered separately. 

The explanation of the paradox is, of course, that the inhaler really does help both groups; but 

that inhaler users typically have more breathing problems, because inhaler-users typically 

have asthma. That is, the people using inhalers are not an unbiased sample of people in our 

population of patients---but rather, the fact that someone uses an inhaler is a clue that they 

have breathing problems. Therefore, overall, people who use inhalers may have worse 

breathing than those who do not, even if inhalers are beneficial both to people who do, and 

who do not, have breathing problems. 

The application of Simpson’s paradox in explaining how CC may be maintained 

theogh learning mechanisms is, as far as we know, novel. However, the phenomenon has 

11



been used, in a very different way, in attempts to explain how genes for cooperation can 

evolve, including in interactions such as Prisoners’ Dilemma (Nowak & May, 1992; Sober & 

Wilson, 1998), although we shall not consider these arguments further here. 

Simpson’s paradox and how reinforcement learners can keep playing C 

Suppose that, due to the influence of some external factor (we consider some specific 

possibilities below), agents initially tend to behave in a positively correlated manner. If so, 

then learning of one agent’s decision to choose C or D will be informative about the other 

agent’s behaviour. This is the type of biased sample in which Simpson’s paradox can arise.

Specifically, if agents’ responses are positively correlated, this means that CC and 

DD outcomes are the most common; and this implies further that when D is played, it is 

typically associated with a low outcome (the DD pay-off, in Figure 1, where both prisoners 

defect is low in the PD game). Occasionally, of course, the correlation is broken; and then the 

agent who plays D gets a high pay-off (Tempt); and the agent who plays C gets a low pay-off 

(Sucker). But assuming the correlation between responses is high, then low DD pay-off 

dominates---hence the average reinforcement for playing D is low. Conversely, where either 

agent plays C, the correlation ensures that, mostly, the pay-off is the reasonably high CC pay-

off (this pay-off is, by definition of the PD, higher than outcome when both players defect, 

because CC > DD). Only on the occasions where the other agent plays D is a low pay-off 

received. Because of this correlation, C is associated on average with somewhat less than the 

good CC pay-off; and D is associated on average with somewhat more than the poor DD pay-

off. Thus, it is possible for C to receive a higher average reinforcement than D, even though 

the agent will always benefit by playing D. 
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Thus, given a biased sample of C and D responses, the average pay-offs obtained by 

the reinforcement learner may be greater for C, because C is mostly associated with fairly 

good outcomes, in which the other agent co-operates; whereas D is most associated with poor 

outcomes, in which the other agent does not cooperate. Of course, the agent would do even 

better by consistently playing D; but a reinforcement learner is not able to exploit this---it is 

not able to notice and correct for biased sampling. Instead, its behaviour is driven by average 

pay-off, even when the sampling that leads to that average is systematically biased. 

There is a good deal of empirical evidence that people also appear to be unable to 

correct effectively for sampling bias: (a) theories of associative learning, based on principles 

similar to reinforcement learning, compile averages, without correcting for sampling bias 

(Pearce & Bouton, 2000; Waldmann, 1996); (b) in direct experimental tests, people fall into 

Simpson’s paradox (Curley & Browne, 2001; Fiedler, Walther, Freytag, & Nickel, 2003; 

Spellman, Price, & Logan, 2001); (c) a wide range of cognitive and social judgment biases 

can be explained by an inability to correct for biased sampling (e.g., Fiedler, 2000). We 

report, below, a direct empirical demonstration that co-operation may be high, and stable, 

where Simpson’s paradox applies. 

Inducing a positive correlation between agents’ behaviour from game pay-offs

Before exploring this phenomenon in more detail, in simulations and human 

experiments, we consider one simple, and experimentally useful, way in which a correlation 

between agents’ behaviour may arise. The case that we explore henceforth is that the 

structure of the game itself may induce such correlations. It is well-known that different 

types of PD lead to different degrees of co-operative behaviour (different proportion of C 

choices) (Rapoport & Chammah, 1965). Below, we assume that there are two kinds of game, 

nice and nasty games, which participants play in an intermixed fashion. Here, ‘type of game’ 
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is the variable that induces the crucial correlation between the behaviour of the two agents. 

As we note in the Discussion, many other sources of such correlations may be of interest. For 

example, considering human social behaviour, it is frequently observed that co-operative 

behaviour is much more likely to occur if both people are within the same group, rather than 

in different groups (these groups can be defined by nationality, profession, or even 

arbitrarily, as “red” and “green” groups). If people must play PDs with an anonymous other 

player, knowing only whether they are from the same, or different group, then it is likely that 

they will cooperate more strongly with group members. Thus, within-group encounters will 

be overrepresented by CC; and between-group encounters will be associated by DD. This is 

just the correlation that is relevant for giving rise to Simpson’s paradox.  More generally, to 

the extent that people’s (or animal’s) choice behaviour in real decision making situations is 

influenced by external variables, which are relevant to both players in the game, then such 

positive correlations may arise. 

Preview

We have tested these theoretical ideas in two ways. We present the results of an 

experiment in which people play repeated PDs. The second test is that we modelled the 

results of this experiment, using a population of simple reinforcement learners. As we shall 

see, both human agents and reinforcement learners can stably cooperate in PD, when 

Simpson’s paradox applies. 

Simpson’s Paradox Meets Prisoner’s Dilemma: An Experimental Demonstration

We gave participants a sequence of one-shot Prisoner’s Dilemmas (Figure 1) in which 

agents were anonymous and randomly paired afresh for each trial. Situational factors that 

influence behaviour correspond to two different types of game: nice and nasty. The nice 
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situation (Figure 3a) was a Nice PD where pay-offs gave little incentive for noncooperation; 

and by choosing the “kind” action 1, a player loses, e.g., one extra unit of reward, and 

thereby gives the other player ten reward units. The nasty situation (Figure 3b) was a Nasty 

PD, where there is substantial incentive for noncooperation, because by choosing the “kind” 

action 1, a player loses, e.g., five extra units of reward (instead of ending up with zero loss if 

choosing action 2), and thereby gives six reward units to the other player (who loses five 

instead of eleven units). In all cases, of course, standard game theory would predict that the 

self-interested agent should not cooperate, but should play defect. But Rapoport and 

Chammah (1965) show that changing the pay-offs, as indicated here, substantially modifies 

people’s propensity to cooperate (validating the “Nice” and “Nasty” labels above). 

INSERT FIGURE 3 ABOUT HERE

Thus, we already have the starting point for the operation of Simpson’s paradox. If 

the other player plays C, the self-interested agent will have a higher pay-off by playing D; 

and if the other player plays D, the self-interested agent will have a higher pay-off by playing 

D. But because the other players move is correlated with the first players choice, it does not 

necessarily follow that the average pay-off for C will be less than the average pay-off for D. 

To see this intuitively, let us take the extreme case, that all players begin by cooperating with 

100% reliability in the nice game; and defecting with 100% reliability in the nasty game. In 

the first case, as both players cooperate, they receive the CC outcome (see Figure 1). On the 

other hand, in the second case, where both players defect, they receive the less good DD 

outcome. Hence, defection leads to a lower average pay-off than cooperation. Suppose, 

moreover, that the players are not quite perfectly correlated---they occasionally play D in a 

nice game; or C in a nasty game. If they are able to conditionalize on the particular type of 

game that they are playing (nice vs. nasty), then the players should realize that the occasional 
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D is advantageous in the nice game, and hence inceasingly repeat it; and that the occasional 

C in a nasty game is disadvantageous, and eliminate it. Such learners would end up in 

playing D for all games, and following the Nash equilibrium. Yet, if the learners, instead, 

average over all instances where they play C and D, independent of whether the game is nice 

or nasty, then they may find that the average pay-off for C (Co-op with an occasional Sucker, 

see Figure 1) is higher than for D (Defect with occasional Tempt); and hence their level of 

cooperation might be stable or even increase.

To get the cleanest possible instance of this phenomenon, we added a further factor: 

we make the overall levels of pay-off in “nice” games higher than those in “nasty” games. In 

game theory, where each individual game is considered independently, and strategy is 

invariant over additive changes to all pay-offs, this should make no difference. But for 

reinforcement learners who do not conditionalize over game types, this will strengthen 

Simpson’s paradox still further---because the CC pay-off in the nice game will be especially 

high in relation to the DD pay-off in the nasty game. Specifically, we implemented this by 

making the outcomes of the ‘nice’ games positive; and the outcomes of the ‘nasty’ games 

negative. 

The set-up used here is, of course, deliberately quite extreme: our goal was to present 

only an “existence proof” of a very unexpected phenomenon – that reinforcement learners 

can stably play C, in a sequence of one-shot PDs. Exploring the range of situations in which 

Simpson-type effects can occur in PD is an interesting direction for future work. 

The experiment below contrasts a Mixed condition, where nice and nasty games  are 

randomly sampled with equal frequency and two control conditions, one with nice games 

only and another with nasty games only. Each game was a one-shot prisoner’s dilemma 

because agents were paired afresh for each game, over a computer network; and agents were 

16



anonymous. According to previous experimental results on game-playing (Rapoport & 

Chammah, 1965) it is natural to expect that cooperation will be highest in Nice condition, 

lowest in Nasty condition, and intermediate in Mixed condition. But according to the current 

analysis, when nice and nasty situations are mixed, there is an induced correlation between 

cooperativeness of self and other, which should boost cooperativeness. Thus, we predict that 

Mixed condition should produce as much, or more, cooperation than Nice condition.

Method

Participants. Twenty participants took part in each of the three conditions of this 

study (so there were 60 participants in total) recruited from the University of Oxford student 

population via the experimental economics research group mailing list. Participants were 

typically in the age-range 18-30. (All participants subsequently played a further 48 games, to 

explore a context effect not considered in this paper.) All participants were paid £3 plus 

performance related winnings of up to £3.

Design. As outlined above, there were three conditions in the experiment: Nice games 

only; Nasty games only; and a Mixed condition consisting of equal numbers of nice and 

nasty games combined randomly. In order to control for the effects related to the absolute 

magnitude of the received pay-off from each round, we used four different versions of these 

games: the pay-offs in Figure 3a and 3b were either used directly, or multiplied also by 4, 7, 

and 10; different pay-off values were randomly intermixed. In each condition, different 

participants played a sequence of 48 randomly chosen games. 

Procedure. The experiment was conducted interactively in groups containing 4 to 8 

participants. The participants were informed that on each round of the game they would play 

against a randomly selected player from their group. This random matching aimed to make it 

impossible to infer the strategy of the other player from the history of the game, and thus to 
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create the one-shot situation of playing against a stranger. Thus we also aimed to prevent 

people from learning a model of their opponent, which is another significant contextual 

factor that has been shown to affect strategic behavior (see Pruitt and Kimmel, 1977, for a 

review). 

Each condition consisted of a sequence of rounds of PD game in which players make 

their choices simultaneously. We used the label “1” to denote the cooperative response and 

“2” for the uncooperative one in order not to prime certain social values in the group, which 

might induce certain strategies that could additionally bias the results. The games were 

presented in a random order. On each round of the game the participants were presented with 

a matrix of the game on the computer screen and they had to choose their decision strategy (1 

or 2), and after both players in each pair have made their decisions the round ends and they 

were informed on the screen about the decision made by the other player, and their pay-offs 

from the game. At the end of the experiment, the accumulated score in points was transferred 

into cash according to an exchange rate. In this experiment the participants were also asked 

to state how probable they think it is that the other player will cooperate, but we do not report 

these results here because our simulation was designed to model only the choice behaviour 

and also because the prediction results showed the same trend as the choice data. 

To focus participants’ attention on the differences between the games, it was 

explicitly stated in the instructions that in every round the pay-off values in the matrix will 

change, and that we are interested in how these changes influence people’s decision strategy. 

There was also a detailed explanation of the strategic pay-off structure of the games and the 

differences between the two types of game, which we are here calling the nice and nasty 

games (although without, of course, using these evaluative labels). This aimed to eliminate 

an effect that we observed during pilot tests: that participants sometimes stop attending to 
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each particular game, and start to play according to some (usually social or value-based) rule 

(e.g., start always to defect because they have learned in economics textbooks that this is the 

correct strategy).  

Results

In order to see how each variable changed over time, we averaged the raw results per 

each participant in blocks of six rounds to reduce the variability of the data. So there were 

eight blocks for the 48 rounds. The figures presented here were derived by first calculating 

the results individually for each participant and then averaging over all participants per 

condition. 

Figure 4 presents the average cooperation rate in each condition. The average 

cooperation in the Mixed condition (.45) was higher than both the Nice condition (.33) and 

the Nasty condition (.18). The differences between the conditions were examined with a one-

way univariate analysis of variance, with the mean cooperation as the dependent measure. As 

predicted by our account, cooperativeness follows the ordering Mixed > Nice > Nasty, and 

there was a significant main effect of condition, F(2, 57) = 9.27, p = .0003. 

INSERT FIGURE 4 ABOUT HERE

Our explanation  for  this  effect  requires  that  agents’  choices  are  correlated in  the 

Mixed condition. This is confirmed in Table 1, which shows that there was a strong tendency 

to cooperate in Nice games (more cooperation than defection); and not to cooperate in Nasty 

games (more defection than cooperation).  Hence,  in the Mixed condition,  the exogenous 

variable of ‘game-type’ induces a correlation between the agents’ choices. By contrast (as 

can be read off Figure 4), in the conditions where agents had only Nice or Nasty games, there 

was more defection than cooperation.

INSERT TABLE 1 ABOUT HERE 
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Table 2 shows that, as expected, in the Mixed condition only, the average pay-off on 

trials where an agent chose to cooperate was much higher than the average pay-off on trials 

where the agent chose not to cooperate. Thus, the results presented in Table 2 show that the 

correlation between responses in the Mixed condition caused the average received pay-off to 

be higher on trials on which an agent chooses C than when the agent chooses D. This does 

not occur in the Nice or Nasty conditions.

INSERT TABLE 2 ABOUT HERE

Table 3 shows the average pay-offs for C and D in Mixed condition broken down by 

Nice and Nasty games. Note that the pay-off for C is lower than D in both Nasty and Nice 

games, but the overall pay-off for C is higher when all data are summarized together (i.e., the 

weighted average of the pay-off received from the two games) because the relative 

proportion of C play is higher than D play; which is a clear example of Simpson’s paradox.

INSERT TABLE 3 ABOUT HERE

The Simpson’s paradox arising in the Mixed condition is best summarised and 

graphically illustrated in Figure 5. Nice games and Nasty games represent the average pay-

off received from the nice and nasty games when a player plays C or D respectively. 

However, the average pay-off received from C play in Nice games is higher than the pay-off 

received from D play in Nasty games because when players play Nice games they tend to 

play CC most of the time, and while when they play Nasty games they end up playing DD 

most of the time. As a consequence of these skewed distributions, the average pay-off 

reinforcement for the C strategy is higher than for the D strategy. In summary, the Simpson’s 

paradox has biased each player’s judgment of the utility of each strategy by enforcing the 

conclusion that overall C was more profitable than D although in each particular game D was 

the strategy that brought higher pay-off.
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INSERT FIGURE 5 ABOUT HERE 

We believe that average pay-off (or reinforcement) plays a vital role in sustaining the 

stable cooperation rate. 

Discussion

People evaluate actions on the basis of their average pay-offs (e.g., Erev & Roth, 

1998, 2002, apply such reinforcement learning models to behaviour in games), but they have 

a cognitive blindspot: they cannot without correcting for biased sampling. When situations 

differ in the degree to which they encourage cooperation, (un)cooperative actions tend to be 

associated with (un)cooperative actions of others. These associations may entrench altruistic 

cooperative behaviour with strangers, even where selfish behaviour has a higher pay-off in 

every situation; and, moreover, may lead to an illusory belief that kindness to strangers 

begets other strangers’ kindness to the self. Thus, a cognitive blind-spot, our inability to 

correct for sampling bias, may be an important foundation for social behaviour.

Multi-Agent Simulation

The empirical data reviewed above indicate that people evaluate actions on the basis 

of their average pay-offs, and are unable to correct for biased sampling (Fiedler, 2000). 

These results are also consistent with the idea that people learn to choose their responses 

according to the reinforcement for each choice option. Indeed, Erev and Roth have applied 

such reinforcement learning models to behaviour in games (Erev & Roth, 1998; Erev & 

Roth, 2002), showing good fits with a range of empirical data on games including repeated 

PD games. Reinforcement learning has not been applied to sequences of one-shot PD 

however---indeed, except in the light of the Simpson’s paradox observations that we have 

made here, it might seem pointless to do so, because it might be assumed that players would 

inevitably converge to play D. The goal of the present simulations is to investigate whether a 
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population of reinforcement learners can model the experimental results that we have 

observed with human players who stably choose high levels of C responding.

To try to describe the experimental results presented in the previous section, we 

propose a probabilistic choice model that uses reinforcement learning to updates the choice 

probabilities for C and D respectively. The model is determined a set of recursive relations, 

between choices and pay-offs. The pay-offs of the games determine how agent’s choices 

deteremine the pay-offs they received. But more subtle is the relationship between the 

“reinforcement” history of pay-offs determine the current choices. Let us consider this 

process in more detail.

Let us start by capturing the overall amount of cooperation for C and D, based on the 

previous pay-offs for those choices. The simplest assumption is simply to adopt the most 

elementary form of Herrnstein’s matching law (see Rachlin & Laibson, 1997, for a review), 

and assume that:

)(ˆ)(ˆ
)(ˆ

)Pr(
DMCM

CMC
+

=

)(ˆ)(ˆ
)(ˆ

)Pr(
DMCM

DMD
+

= (1)

where Pr(C) is overall probability of playing C, independent of whether the agent is playing a 

nice or a nasty game. The )(ˆ CM  and )(ˆ DM is the average pay-off for playing C and D 

respectively. We now need to embody in the model the key empirical observation by 

Rapoport and Chammah (1965) that ‘nice’ games systematically lead to more cooperation 

than ‘nasty’ games. Specifically, we assume that the cooperation level in nasty games is a 

fraction k of the cooperation level in nice games, where 0<k<1. 
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)|Pr()|Pr( niceCknastyC =                                            (2)

We can now solve for Pr(C|nasty) and Pr(C|nice) given the further constraint, which 

is simply an identity of probability theory, that the probability of playing C is a weighted sum 

of Pr(C|nasty) and Pr(C|nice), weighted by the probabilities of each type of game, and 

similarly for Pr(D): 

)()|()()|()( nastyPnastyCPnicePniceCPCP +=  

)()|()()|()( nastyPnastyDPnicePniceDPDP +=  (3)

Intuitively, in this model, the matching law determines the overall level of 

cooperativeness. But in addition, there is further bias to play C is nice games, enforced by (2) 

and (3). Rearranging, we can solve for the levels of cooperation in each type of game, given 

quantities that can be directly observed in the simulation (the averages )(ˆ CM , )(ˆ DM , the 

probabilities of each type of game, Pr(nice), Pr(nasty), and k).
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Finally, we note that there are some minor additional points to be noted in relation to 

k. If we fix k, then this constrains the overall level of cooperation in nasty games to be at 

most k (this value will be reached, of course, when cooperation in nice games reaches 1). We 

chose to avoid this problem by adaptively modifying k, depending on the overall cooperation 

level of the game. 







−

−−+=
)(1

)()(,0max)1( 00 niceP
nicePCPkkk                                  (5)

where 0k  is a fixed parameter between 0 and 1. The key observation here is that as Pr(C) 

increases, k also increases, and hence the difference between the cooperation levels in the 

nasty and nice games can become arbitrarily small. The Appendix provides a brief rationale 

for the specific implementation of this approach used here.

Overall, then, the equations in (4) show how to determine the cooperation levels in 

the nice and nasty games; these cooperation differ by a factor of k, which is modified on-line 

in the simulations by (5). 

These equations determine the set of rules needed to play the game. The quantities in 

equation (4) are determined by the actual pay-offs during the simulation, U(C) and U(D), and 

the preset distribution of nice and nasty games, P(nice) and P(nasty). In order to start the 

procedure we only need to specify initial values for P(C |nice) and k0 (this starting value of 

k). We specified the initial values for P(C |nice) = .5 and a value for k0 = .1 (this figure 

seemed reasonable, given the heuristic justification that nasty games were ten times less 

cooperative than the nice games according the cooperation index proposed by Rapoport and 

Chammah, 1965). Note that the ratio P(C|nasty)/P(C|nice) is fixed to 0.1 only in the 

beginning of the simulation and is changing with increasing P(C|nice). In the simulation 

presented here, k was observed to asymptote at about 0.2-0.3, which is consistent with this 
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parameter estimated from the experimental results. The precise starting value of the bias, k0, 

was not crucial. The qualitative pattern results reported below, which occurs nearly  always 

with the values we chose here, arises less than 50% of the time, if the initial value of k0 

exceeds .3. 

There were three conditions, Mixed, Nice, and Nasty, as in the experiment. The 

averaging was performed over the previous ten games played in a sequence. The simulations 

were performed using the multi-agent platform WSIM, under development at the New 

Bulgarian University. We tried to be as close as possible to the experiment and used the same 

games and set up. The games were not multiplied by 4, 7, and 10, as in the experiment, 

because the absolute magnitudes of the pay-offs do not make any difference for the learning 

and choice algorithm described here. However, in the simulation all games were rescaled to 

have positive pay-offs, because the model calculates absolute reinforcements and does not 

differentiate between positive and negative values. To mimic the experiment, eight artificial 

agents per group played PD game against different opponent on each round. At the beginning 

of the session, each agent played with initial probability of cooperation, P(C|nice) and/or 

P(C|nasty) depending on the condition, and updated this probability depending on the 

received reinforcement (pay-offs), as formulated in Equation (4).   

Results

Figure 6 presents the average cooperation rate in each condition of the simulation. We 

averaged the raw results per each agent in blocks of six rounds so there were eight blocks for 

the 48 rounds (as we did with the experimental results). The figures were derived by first 

calculating the results for each agent and then averaging over all participants per condition. 

The average cooperation in the Mixed condition (.44) was higher than both the Nice 

condition (.34) and the Nasty condition (.25). Thus, the expected effect observed in the 
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experiment, namely higher cooperation in the Mixed condition, was also found in the 

simulations. The differences between the conditions were examined with a one-way 

univariate analysis of variance, with the mean cooperation as the dependent measure. There 

was a significant main effect of condition, F(2, 57) = 18.3, p < .0001.

INSERT FIGURE 6 ABOUT HERE

Our hypothesis about the explanation of the increase of cooperation in the Mixed 

condition implies coordination between the agents due to the bias to cooperate more in nice 

games. This coordination should lead to a relatively high percentage of C play in the nice 

games and high percentage of D play in the nasty games. The results presented in Table 4 

confirm this hypothesis. There was a strong tendency to cooperate more in Nice games and 

not to cooperate in Nasty games. This result is very similar to the experimental result shown 

in Table 1. Thus the endogenous bias to be more cooperative in nice games allowed the 

exogenous variable of ‘game-type’ to induce a correlation between the agents’ choices.

INSERT TABLE 4 ABOUT HERE

However, can this initial bias alone explain an average cooperation rate in the Mixed 

condition that is higher than that observed in the Nice condition? It cannot, because only in 

half of the games in the Mixed condition, the cooperation rate will be as high as in the Nice 

condition, while in the other half the cooperation will be much lower. As a result the average 

cooperation in the Mixed condition would be lower than in the Nice condition. However, 

note that in our model choice behaviour is updated by reinforcement learning that takes into 

account only the average received pay-offs per strategy without taking into account the 

difference between the games. This algorithm allows, if choices are coordinated, to receive 

higher average pay-off for playing C than for playing D in the Mixed condition and vice 

versa in the Nice and Nasty conditions. This is because when an agent plays C the outcome is 
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usually CC, while when D is played the outcome is usually DD (and CC get bigger pay-off 

than DD according to the structure of the PD game). Table 5 summarises this result in a 

format that is comparable with Table 2 from the experiment above. Thus this result is 

consistent with the findings of the experiments. In summary, our analysis shows that the 

result in the Mixed condition is caused by the higher pay-offs received from C play in 

comparison to D play (similarly to the experiment), which does not occur in the Nice or 

Nasty conditions.

INSERT TABLE 5 ABOUT HERE

 Table 6 shows the average pay-offs for C and D in Mixed condition separately for 

Nice and Nasty games. The pay-off for C is lower than D in both Nasty and Nice games, but 

the overall pay-off for C is higher when all pay-offs are averaged together. This because the 

relative proportion of C play is higher than D play; which is a clear example of Simpson’s 

paradox. Thus this result replicates the experimental data.

INSERT TABLE 6 ABOUT HERE

The modelling results clearly demonstrate how reinforcement learning can sustain 

and increase cooperation due to its inability to bring together samples of different origin and 

different levels of analysis that can support different conclusions and strategies (see Fiedler, 

2000, for a discussion of other judgment biases arising from such biased sampling). This 

effect is known as the Simpson’s paradox and, as we claimed before, any learning algorithm 

that is based on average reinforcement, cannot resolve this sampling problem. 

Overall, both the simulation results and the experimental data indicate that inducing a 

correlation between agents’ behaviour, in this case by varying the cooperativeness and the 

pay-offs of the games in the Mixed condition, can lead to gradually increasing cooperation. 

Moreover, the cooperation rate where there is a mix of games can be consistently higher than 

27



the cooperation rate when there are only nice games. That is, by adding nasty games to the 

mix of games that agents encounter, where nasty games are those that, considered alone, tend 

to produce uncooperative response, can actually increase the overall amount of cooperation. 

This apparently paradoxical effect results directly from the operation of Simpson’s paradox. 

To the degree that artificial, animal or human agents are influenced in their choices by 

reinforcement, then they will fall into Simpson’s paradox because reinforcement learning 

algorithms cannot ‘understand’ simultaneous sampling at different levels (which is necessary 

to solve the paradox). So, if the responses of players are correlated due to some common 

factor (here, whether the game itself is nice or nasty), they may potentially fail to find the 

Nash equilibrium, and instead stabilize on playing the cooperative (even though dominated) 

strategies.

General Discussion

We began by noting that the concept of Nash equilibrium from game theory, the 

normative economic framework for understanding how agents should interact, faces three 

types of challenge: too many Nash equilibria; observed behaviour that does not seem to fit 

any Nash equilibrium; and strong rationality assumptions, which may overestimate the 

computational power both of artificial agents, and the cognitive system.

We saw that one way of attempting to finesse the problem of cognitive limitation is to 

model agents as reinforcement learners---and in many circumstances, such agents will 

converge to Nash equilibria. But we noted also that some patterns of observed behaviour do 

not seem to converge in this way---and indeed, the human experiment that we discuss here is 

an example of this phenomenon. We believe that it is likely that there is a wide range of 

factors that are relevant to understanding why people do not follow Nash strategies, including 

effects of cultural and moral norms. But we have demonstrated in an experiment and also 
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using computational modelling, that the basic principle of reinforcement learning provides a 

further, and perhaps rather unexpected, mechanism for stable non-Nash strategies like mutual 

cooperation in a one-shot PD game. 

From the point of view of understanding the behaviour of populations of interacting 

animal and human agents, it is interesting to ask how likely the type of effect that we have 

considered might occur. Specifically, how often are there factors that lead to the choices of 

the players in a PD-type game being positively correlated (those opening up the conditions 

for Simpson’s paradox to operate, as we have discussed). We suggest that these 

circumstances may be quite widespread. To the degree that agents are similar; and to the 

degree to which the factors that determine their decision are related, it seems likely that there 

will be likely to be a positive correlation (and perhaps quite a large positive correlation) 

between their behaviours. 

We have already noted earlier that one source of such a correlation might be a 

tendency for agents in the same group (however ‘group’ may be defined) to cooperate---and 

effect that has been widely studied experimentally (Hewstone, Stroebe & Stephenson, 1998). 

But purely environmental factors might play the same role. If it turns out that agents 

cooperate over food distribution more or less effectively, depending on the nature of the food 

to the divided, or depending on the degree of food shortage that is prevalent, or for any other 

reason, then these reasons will bear on both agents equally. Hence, it will be likely that 

positive correlations between agents’ choices will be observed. 

In many real-world settings, of course, the strict framework of the one-shot PD will 

not hold. Thus, in small human or animal communities it is likely that agents may play the 

same game against each other repeatedly; and that, for some species at least, they will be able 

to track both the identity, and some elements of the past behaviour, of other agents. In such 
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cases, interactions may be more appropriately modelled in terms of repeated PD, rather than 

the one-shot PD under study here. Nonetheless, it is still likely that the more sophisticated 

memory and reasoning processes required to support this kind of behaviour will not 

completely overwrite the effects of simple reinforcement learning (Erev & Roth, 2000). 

Hence, we suggest that the present results may be of relevance to understanding cooperative 

behaviour even in domains where interactions between agents are not strictly one-shot---

essentially because reinforcement learning appears to be a powerful learning mechanism in 

the biological domain; and reinforcement learning treats each game as one-shot. 

We hope that experimental work and computer simulations with computationally 

simple agents may integrate in important ways with the economic, game-theoretic style of 

explanation of how agents should interact. Returning to the three issues concerning the 

applicability of economic concepts such as the Nash equilibrium that we noted before, we 

believe that experimental and computational simulations of the processes of learning that 

lead to animals or people’s behaviour may help understand (1) why some Nash equilibria are 

favoured over others; (2) how, as in the simulations presented here, non-Nash equilibria can 

be reached; (3) under what conditions a purely rational explanation, which appears to impute 

to agents very substantial reasoning abilities, can, or cannot, be assumed to fit with the 

empirical results obtained with computationally limited agents. 

We have, in particular, found a new mechanism which may contribute to explaining 

the stability of cooperation with strangers, who will never be encountered again, which 

seems to be a fundamental aspect of human social behaviour. 
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Table 1 

Percentage of C and D responses in the Mixed condition 

Decision Nice Nasty
Cooperate (C) 37% 8%
Not-Cooperate (D) 13% 42%
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Table 2 

Average pay-offs for C and D in the Mixed, Nice and Nasty conditions

Decision Nasty Nice Mixed
Cooperate (C) -42.7 20.1 28.7

Not-cooperate (D) -31.3 21.1 -15.8
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Table 3 

Average pay-offs for C and D in the Nice and Nasty games in the Mixed condition

Decision Nasty Nice
Cooperate (C) -35.4 41.2
Not-cooperate (D) -30.5 46.4

37



 Table 4

Percentage of C and D responses in the Mixed condition of the simulation 

Decision Nice Nasty
Cooperate (C) 37% 7%
Not-Cooperate (D) 8% 48%
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Table 5

Average pay-offs for C and D in the Mixed, Nice and Nasty conditions of the simulation   

Decision Nasty Nice Mixed
Cooperate (C) 0.88 1.28 3.16

Not-cooperate (D) 2.92 2.17 2.88
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Table 6 

Average pay-offs for C and D in the Nice and Nasty games in the Mixed condition of the  

simulation 

Decision Nasty Nice
Cooperate (C) 0.72 3.62
Not-cooperate (D) 2.60 4.39
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Figure Captions

Figure 1. Prisoner’s Dilemma Game matrices (basic versions). 

Abstract version of the game. Here, the left of the pair of items is the pay-off for agent 1; the 

right hand item is the pay-off for agent 2. The game is defined by the chain of inequalities 

Tempt >Co-op >Defect >Sucker, where Co-op is the pay-off if both cooperate (C), Defect is 

the pay-off if both defect (D), Tempt is the pay-off if one defects and the other cooperates 

(i.e., it represents the “temptation” of defecting against a co-operative opponent), and Sucker 

is the pay-off if one cooperates and the other defects. From an individualistic perspective, 

defection always pays (because Tempt > Co-op; and Defect > Sucker). But, in contrast, it is 

better if both agents cooperate (with a Co-op, Co-op outcome) than if both agents defect 

(with a Defect, Defect  outcome), because Co-op > Defect.

Figure 2. Simpson’s paradox. 

Although the overall contingency between treatment (inhaler vs. no inhaler) and breathing 

improvement is negative in the population (upper table), the contingency is positive within 

both subsets (people with asthma and people without asthma). In order to solve this paradox 

people have to understand that they are simultaneously sampling at different levels.

Figure 3. Prisoner’s Dilemma Game matrices (basic versions). 

a) Positive/Nice version of the game. b) Negative/Nasty version of the game. As in Figure 1, 

the left hand side number of a pair of outcomes is that associated with “you”; the right hand 

number is the outcome to the “other.”

Figure 4. Cooperation rate during the 48 trials in the Nice, Nasty, and Mixed conditions.
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Figure 5. Average pay-off received from Nice and Nasty games when a player chooses C and 

D respectively.

Figure 6. Cooperation rate during the 48 trials in the Nice, Nasty, and Mixed conditions of  

the simulation.
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Figure 1

Agent 2
C D

Agent 1 C Co-op, Co-op Sucker, Tempt
D Tempt, Sucker Defect, Defect
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Figure 2

Predictor

Dependent Variable Conditional

Clear airway Blocked airway P(Clear) Contingency

Overall Inhaler 499 501 .50 -.32
No inhaler 820 180 .82

People Inhaler 400 500 .44 .34
with Asthma No inhaler 10 90 .10

People Inhaler 99 1 .99 .09
Without Asthma No inhaler 810 90 .90

44



Figure 3

a) Nice game  Other
  1 2

You 1 10, 10 0, 11
2 11, 0 1, 1

  
b) Nasty game  Other

  1 2

You 1 -5, -5 -11, 0
2 0, -11 -6, -6
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Figure 4
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Figure 6
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Appendix

If Pr(C|nasty) is a proportion k of Pr(C|nice), then if k is fixed, this implies that Pr(C|nasty) 

cannot  exceed  k,  and  will  attain  this  value  when  Pr(C|nice)  =  1.  This,  moreover,  will 

constrain the overall cooperation rate Pr(C) to be no greater than Pr(nice) + kPr(nasty) (using 

equation (3)). This can be rewritten as: 

)Pr(1()Pr()( nicekniceCP −+≤                                             (A1)

and hence

          )Pr(1
)Pr()Pr(

nice
niceCk

−
−≥                                             (A2) 

where we have the additional constraints that k is less than or equal to 1 (this captures the fact 

that cooperation rates are assumed to be higher in nice games); and of course,  k must be 

greater than or equal to 0, or Pr(C|nasty) will become a negative probability.  Note that Pr(C) 

- Pr(nice) can be negative so that to express these constraints on k we need to write:

                                                                                                            (A3) 

Thus,  to  avoid  k becoming  too  low  to  fit  with  Pr(C),  we  can  reparameterize  k 

as running between these maximum and minimum values: 







−

−−+=
)Pr(1

)Pr()Pr(,0max)1( 00 nice
niceCkkk                                  (A4)

Where 0k  is a parameter between 0 and 1, which determines the size of the difference 

between cooperativeness in nice and nasty games. If 0k = 1 the level of cooperativeness is the 

same in both nice and nasty games; as 0k approaches 0, then difference between cooperation 
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



−

−≥≥
)Pr(1

)Pr()Pr(,0max1
nice

niceCk



rate increases. Nonetheless, with this parameterization, the overall cooperation rate Pr(C) can 

vary between 0 and 1. 
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